Attack-Resistant Location Estimation in Sensor Networks

Donggang Liu and Peng Ning
North Carolina State University
{dliu, pningt@ncsu.edu

Abstract— Many sensor network applications require sensors’ locatins
to function correctly. Despite the recent advances, locain discovery for
sensor networks inhostile environments has been mostly overlooked. Most
of the existing localization protocols for sensor networksare vulnerable
in hostile environments. The security of location discover can certainly
be enhanced by authentication. However, the possible nodempromises
and the fact that location determination uses certain physial features
(e.g., received signal strength) of radio signals make auémtication not
as effective as in traditional security applications. Thispaper presents
two methods to tolerate malicious attacks against beacondsed location
discovery in sensor networks. The first method filters out matious
beacon signals on the basis of the “consistency” among muyjte beacon
signals, while the second method tolerates malicious beatosignals
by adopting an iteratively refined voting scheme. Both methds can
survive malicious attacks even if the attacks bypass authdication,
provided that the benign beacon signals constitute the majiy of the
“consistent” beacon signals. This paper also presents thenplementation
of these techniques on MICA2 motes running TinyOS, and the eluation
through both simulation and field experiments. The experimatal results
demonstrate that the proposed methods are promising for thecurrent
generation of sensor networks.
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collectively as alocation reference In the second stage, a sensor
node determines its own location when it has enough number of
location references from different beacon nodes. A typigadroach
is to consider the location references as constraints the¢nsor
node’s location must satisfy, and estimate it by finding aheatatical
solution that satisfies these constraints with minimum nesion
error. Existing approaches either empl@nge-basednethods [5],
[19], [20], [26], [27], which use the exact measurementsiptad in
stage one, orange-freeones [2], [9], [16], [18], [21], which only
need the existences of beacon signals in stage one.

Despite the recent advances, location discovery for wssegensor
networks in hostile environmeniswhere there may be malicious
attacks, has been mostly overlooked. Most of existing lonat
discovery protocols become become vulnerable in the pceseh
malicious attacks. For example, an attacker may provideriact
location references by replaying the beacon packets epézd in
different locations. Moreover, an attacker may comproraiggacon
node and distribute malicious location references by lyaigput
the beacon node’s location or manipulating the beacon &ideay.,

Recent technological advances have made it possible tdogevechanging the signal strength if RSSI is used to estimate idtartte).

distributed sensor networks consisting of a large numbeloaf

cost, low-power, and multi-functional sensor nodes thatrmaoinicate
in short distances through wireless links [1]. Such sensdwaorks
are ideal candidates for a wide range of applications sudheakh
monitoring, data acquisition in hazardous environmemsg, military
operations. The desirable features of distributed senstwranrks have
attracted many researchers to develop protocols and tigwrithat
can fulfill the requirements of these applications.

Sensors’ locations play a critical role in many sensor netvap-
plications. Not only do applications such as environmenhitooing
and target tracking require sensors’ location informationfulfill
their tasks, but several fundamental techniques develfipetireless
sensor networks also require sensor nodes’ locations. >@nge,
in geographical routing protocols (e.g., GPSR [15] and GH28),
sensor nodes make routing decisions at least partiallydbaseheir
own and their neighbors’ locations. Indeed, many sensoworét
applications will not work without sensors’ location infoation.

A number of location discovery protocols (e.g., [2], [5]],[BL8]-
[21], [26], [27]) have been proposed for wireless sensowaeks
in recent years. These protocols share a common feature: dlhe
use some special nodes, callbdacon nodeswhich are assumed
to know their own locations (e.g., through GPS receivers anual
configuration). These protocols work in two stages. In thet fitage,
non-beacon nodes receive radio signals caliedcon signaldrom
the beacon nodes. The packet carried by a beacon signalh wigc

In either of these cases, non-beacon nodes will determipe& th
locations incorrectly.

The location verification technique proposed in [25] carifyehe
relative distance between a verifying node and a beacon, raouk
the technique proposed in [16] can protect location disgousing
sectored antennae at beacon nodes. However, neither ofcéreen-
sure correct location discovery when beacon nodes are coniged.
A robust location detection is developed in [24]. Howevecannot
be directly applied in resource constrained sensor nesvdue to its
high computation and storage overheads.

Without protection, an attacker may easily mislead the tiona
estimation at sensor nodes and subvert the normal operafion
sensor networks. The security of location discovery catagdy be
enhanced by authentication. Specifically, each beaconepatiould
be authenticated with a cryptographic key only known to theder
and the intended receivers, and a non-beacon node accep&anb
signal only when the beacon packet carried by the beacoralsign
can be authenticated. However, authentication does natagige
the security of location discovery, either. An attacker nfayge
beacon packets with keys learned through compromised nades
replay beacon signals intercepted in different locatidndeed, our
experiment in Section 1I-B shows that an attacker can iniced
substantial location estimation errors by forging or rglg beacon
packets.

In this paper, we develop two attack-resistant locatioimegton

call a beacon packetusually includes the location of the beacortechniques to tolerate the malicious attacks against rhaged
node. The non-beacon nodes then estimate certain measusemiecation discovery in wireless sensor networks. Our firshiéque,

(e.g., distance between the beacon and the non-beacon) rzdes!
on features of the beacon signals (e.g., received signahgitn
indicator (RSSI), time difference of arrival (TDoA)). Wefee to such

namedattack-resistant Minimum Mean Square Estimatienbased
on the observation that malicious location reference®odhiced by
attacks are intended to mislead a sensor node about itsdocand

a measurement and the location of the corresponding beamd® nthus are usually inconsistent with the benign ones. To éxphis



observation, our method identifies malicious location neiees by ) o e max=0

examining the inconsistency among location referenceticived by P +2_::f§"”’””””‘: ”””””

the mean square error of estimation), and defeats malictasks o S S R e
by removing such malicious data. Our second techniquegting- E 8 ‘ ! ‘

based location estimatiomethod, quantizes the deployment field into [ 3

a grid of cells and has each location reference “vote” on #iés c E [ = [
in which the node may reside. Moreover, we develop a methat th g2 P A
allows iterative refinement of the “voting” results so thatan be °5 . o - o s ©

executed in resource constrained sensor nodes. Location error ntroduced by a maiicious beacon

We have implemented the proposed schemes on MICA2 motgg. 1. Location estimation error. Unit of measurement foand y axes:
[4] running TinyOS [10], and evaluated the performance uglo meter
simulation and field experiments. It shows that the propcedgmes 9
are promising for the current generation of sensor networks o

The rest of the paper is organized as follows. Section |l gss
the proposed approaches for attack-resistant locatiamasn as
well as the simulation evaluation and the field test of theppsed
techniques. Section Il discusses related work. Sectiondicludes
this paper and points out some future research directions. 10

70 fF---

Mean square error
B
5

30

Il. ATTACK-RESISTANTLOCATION ESTIMATION 0

5 5
Location error introduced by a malicious beacon

In this section, we present two approaches to dealing with-ma  Fig. 2. Mean square erra?. Unit of measurement far-axis: meter
cious attacks against location discovery in wireless senstworks.
The first approach is extended from the minimum mean Squaﬁgength when RSSI is used for distance measurement. We also
estimation (MMSE). It uses the mean square error as an itedica@Ssume multiple malicious beacon nodes may collude togéthe
to identify and remove malicious location references. Theond Make the malicious location references appear to be “cemsls
one adopts an iteratively refined voting scheme to toleratcious Our techniques can still defeat such colluding attacks ag &s the
location references introduced by attackers. majority of location references are benign.

Our teghniques are purely based on a set of location refesencg - A4 ck_Resistant Minimum Mean Square Estimation
The location references may come from beacon nodes thaithez e
single hop or multiple hops away, or from those non-beacafeso
that already estimated their locations. We do not distisiguthese
location references, though the effect of “error propagdtimay ) ) i
affect the performance of our techniques due to the estimatirors eédundant location references, there must be some “instensiy”
at non-beacon nodes. We consider such investigations asbos Petween the malicious location references and the benigrs.on
future work. Since our techniques only utilize the locatieferences (An attacker may still have a location reference consisteitti the
from beacon nodes. There is no extra communication overhdgfign ones after changing both the location and the distaalues.

involved when compared to the previous localization scleme ~ However, such a location reference will not generate sigaitly
negative impact on location determination.) To take achgtof

A. Assumptions and Threat Model this observation, we propose to use the “inconsistency” ranibe

We assume all beacon nodes are uniquely identified. In otH@fation references to identify and remove the maliciousson
words, a non-beacon node can identify the original sendexach e assume a sensor node uses a MMSE-based method (e.g., [3],
beacon packet based on the cryptographic key used to aigtiterthe  [191-{21], [26], [27]) to estimate its own location. Thuspst current
packet. This can be easily achieved with a pairwise key bstabent range-based localization methods can be used with thisitpet To
scheme [3], [6], [7] or a broadcast authentication schen@g [2 harness this observation, we first estimate the sensorgidocwith

We assume each non-beacon node uses at most one locatisnMMSE-based method, and then assess if the estimatetibloca

reference derived from the beacon signals sent by each heacte. could be derived from a set of consistent location referenifeyes,
As a result, even if a beacon node is compromised, the attacké® accept the estimation result; otherwise, we identifyrandove the
that has access to the compromised key can only introduceosit m0St “inconsistent” location reference, and repeat thevafpoocess.
one malicious location reference to a given non-beacon rmde This process may contlnue.untll we find a set of consisterdtion
impersonating the compromised node. references or it is not possible to find such a set.

For simplicity, we assume the distances measured from heaco We use the mean square erir of the distance measurements
signals (e.g., with RSSI or TDoA [26]) are used for locaticstie .based.on the gstlmated location as an indicator of .the degfree
mation. (Our techniques can certainly be modified to accodater Inconsistency, since all the MMSE-based methods estimatnaor
other measurements such as angles.) For the sake of ptasente N0de’s location by (approximately) minimizing this meanuacp
denote a location reference obtained from a beacon sigrmtrggle  €rTor- Other indicators are possible but need further tiyaton.
(x,y,3), where (z,y) is the location of the beacon declared in the Definition 1: Given a set of location referencés= {(z1,y1, 1),
beacon packet, anlis the distance measured from its beacon signai?2: ¥2:62); -+, (¥m, ym,dm)} and a location (o, o) estimated

We assume an attacker may change any field in a locatig@sed onZ, the m?an s2qua~tre erz)rozr of this location estimatids
reference. In other words, it may declare a wrong locatioritsn ¢* = > Gizy “”“717‘71 +Ho—vi)®)”
beacon packets, or carefully manipulate the beacon sigoaffect Intuitively, the more inconsistent a set of location referes is,
the distance measurement by, for example, adjusting thealsigthe greater the corresponding mean square error should de. T

Intuitively, a location reference introduced by a malicoattack
is aimed at misleading a sensor node about its location. ,Tihis
usually “different” from benign location references. Whitrere are




gain further understanding, we performed an experimentutiti available for us to perform simulation off-line and detemmian
simulation with the MMSE-based method in [26]. We assume ttappropriater. The threshold is stored on each sensor node. Usually,
distance measurement error is uniformly distributed betwee,.... the movement of sensor nodes (beacon or non-beacon nodeshoio
and enq.. We used 9 honest beacon nodes and 1 malicious beadmve significant impact on this threshold, since the measeméerror
node evenly deployed in3m x 30m field. The node that estimatesmodel will not change significantly in most cases. Howevdrewthe
location is positioned at the center of the field. The mailisibeacon error model changes frequently and significantly, the perémce
node always declares a false location that isieters away from its of our techniques may be affected. In this paper, we assume th
real location, where: is a parameter in our experiment. measurement error model will not change.

Figures 1 and 2 show the location estimation error (i.e.dtfance  Note that the malicious beacon signals usually increasedtiance
between a sensor’s real location and the estimated logadinh the of estimation. Thus, having a lower bound (e.g., Cramer-Ramd)
mean square errof” when z increases. As these figures show, ifs not enough for us to filter malicious beacon signals. Irt, féue
a malicious beacon node increases the location estimation lBy upper bound or the distribution of the mean square error aem
introducing greater errors, it also increases the meanregreors®  desirable. In this paper, we study the distribution of thamsquare
at the same time. This further demonstrates that the meamesgquor errorc? when there are no malicious attacks, and use this informatio
¢? is potentially a good indicator of inconsistent locatioferences. to help determine the threshotd

In this paper, we choose a simple, threshold-based method tasince there is no other error besides the measurement arror,
determine if a set of location references is consistentciBpally, benign location referencéz,y,s) obtained by a sensor node at
a set of location _referenceﬁ = {(x1,y1,§1>, (:c_z,yz,éz),...7 (z0,0) must satisfy:|§ — \/(m—:co)2+(y—yo)2| < ¢, where
(m, ym,0m)} Obtained at a sensor node isconsistent W.r.t. a . is the maximum measurement error.

MMSE-based methodf the method gives an estimated location A the |ocalization techniques are aimed at estimatingation as
(Zo, yo) such that the mean squarS error of this location estimatigihse to the sensor’s real location as possible. Thus, weassyme
G=3", Gizy ”Ofwjf“y"*yi)z) <7 the estimated location is very close to the real location wiiere

The threshold- is clearly a critical parameter. We will discuss howare no attacks. Next, we derive the distribution of the megrae
to determiner in Section II-B.1. We now describe the attack-resistardrror¢? using the real location as the estimated location, and coenpa
MMSE method, assuming is already set properly. it with the distribution obtained through simulation wherete are

Since the MMSE-based methods can deal with measuremens erfocation estimation errors.
better if there are more benign location references, weldh@ep as The measurement error of a benign location refergagey;, 6;)
many benign location references as possible when the masi@nes can be computed as; = &; — \/(l’o — )2 + (yo — y:)2, where
are removed. This implies we should get the largest set afisEmt (,, 4,) is the real location of the sensor node. Assuming the mea-
location references. surement errors introduced by different benign locatioferemces

Given a setl of n location references and a threshotd a  are independent, we can get the distribution of the mearrsareor
naive approach to computing the largest setafonsistent location through the following Lemma.

references is to check all subsets Ofwith 4 location references | emma 1:Let {e1 em} be a set of independent random vari-
. . . PRAAS]

aboutT-consistency, where starts fromn and drops until a subset 5p|eg andu;, o2 be the mean and the variance «ff, respectively.

of £ is found to ber-consistent or it is not possible to find such §¢ the estimated location of a sensor node is its real locatthe

set. Thus, if the largest set of consistent location refesrconsists robability distribution ofc? is lim Fle2 < 2] = q,(mc%w’)

of m elements, a sensor node has to use the MMSE method at IéJ t , m ' ™o : o
1+ (") +---+ () times to find out the right one. K = 10 and Wherey' =37, pi o = /3", 07, ande(x) is the probability
m+1 n a standard normal random variable being less than
m = 5, a node needs to perform the MMSE method for at least 3 .
Proof: Obviously, the mean square error can be computed

times. It is certainly desirable to reduce the computatmrrésource

constrained sensor nodes. by ¢* = Y7, = Thus, the cumulativemdistribution function can
To reduce the computation on sensor nodes, we adopt a gre@8¥032|(7u'ateg byF(§2_ < ) = F(Zi:_l e < mep). Since
algorithm, which is simple but suboptimal. This greedy aigon  {€1,€2,---,em} are independent, according to the central limit
works in rounds. It starts with the set of all location refeves in theorem, we havelim,, .. P(227 < z) = &(z), where
the first round. In each round, it first verifies if the currest sf Sm = >, ,(ef). Thus, we havelim,, .. F(s* < ) =

location references is-consistent. If yes, the algorithm outputs thelim,, e F(Sm < me2) = limm oo P(S"j;“, < mg‘if“/) =
estimated location and stops. Optionally, it may also autpa set (I)(mq?ﬂ/ ). -
of location references. Otherwise, it considers all sisheétocation o

¢ ith ‘ | i p d chodmesib Lemma 1 describes the probability distribution ¢f based on
references with one fewer location reference, and chodeesubset a sensor’s real location. Though it is different from the badoility

%th trlue Igast meap square.lgrrf(.)r das the |nfput t(,) the PeXt,rou%qstribution of¢? based on a sensor’s estimated location, it can be
is algorithm continues until it finds a set efconsistent location used to approximate such distribution in most cases.

references or when it is not possible to find such a set (hergtare .
Let us further assume a simple model for measurement errors,

only 3 remaining location references). . o
The greedy algorithm significantly reduces the computaioner- where the measurement error is evenly dlstnbutgd betweeand
e. Then the mean and the variance &grare 0 and<-, respectively,

head in sensor nodes. To continue the earlier example, arseode , 2 44 .
only needs to perform MMSE operations for about 50 timeg¢ars 21d the mean and the variance for afhare - and -, respectively.

of 387 times) using this algorithm. In general, a sensor megiEgs to  Let ¢ = £, we haveF(¢* < (¢ x €)%) = (VoG 1),
use a MMSE-based method for at mast n+ (n—1) +---+4 = Figure 3 shows the probability distribution of derived from
1+ w times. Lemma 1 and the simulated results using sensors’ estimatations.

1) Determining Threshold: The determination of threshold We can see that when the number of location referencds large
depends on the measurement error model, which is assumeel taég.,m = 9) the theoretical result derived from Lemma 1 is very
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Fig. 3. Cumulative distribution functiod(¢c? < ¢3). Letc = <2.

close to the simulation results. However, wheris small (e.g.;m = Fig. 4. The voting-based location estimation

4), there are observable differences between the thedregsalts g|| possible locations for the sensor node. The sensor nbee t
and the simulation. The reasons are twofold. First, our rétéxal divides this rectangle intd/ small squares (cells) with the same side
analysis is based on the central limit theorem, which is oy |ength L, as illustrated in Figure 4. (The node may further extend
approximation of the distribution when is a large number. Second, the target field to have square cells.) The node then keepsiragvo
we used the MMSE-based method proposed in [26] in the siiualat state variable for each cell, initially set to 0.
which estimates a node’s location by orgproximatelyminimizing Consider a benign location referen¢e, y, §). The node that has
the mean square error. (Otherwise, the valug’dbr benign location  this location reference must be in a ring centereduay), with the
references should never exce€d) inner radiusmax{§ —e¢,0} and the outer radiué+ . For the sake of
Figure 3 gives three hints about the choice of the threshold presentation, we refer to such a ringcandidate ring (centered) at
First, when there are enough number of benign locationeat®s, a |ocation (z, y). For example, in Figure 4, the ring centered at point A
threshold less than the maximum measurement error is endagh is a candidate ring at A, which is derived from the locatioference
example, whenm = 9, 7 = 0.8¢ can guarantee the nine benignwith the declared location at A.
location references are considered consistent with higlhaiility. For each location referencér,y, §), the sensor node identifies
Besides, a large threshold may lead to the failure to filtet othe cells that overlap with the corresponding candidate, rand
malicious location references. Second, wheris small (e.g. 4), the increments the voting variables for these cells by 1. After hode
cumulative probability becomes flatter and flatter when> 0.8.  processes all the location references, it chooses thesicalith the
This means that setting a large thresholtbr smallm may not help highest vote, and uses its (their) geometric centroid asstienated
much to guarantee the consistency test for benign locatifamences; |ocation of the sensor node.
instead, it may give an attacker high chance to survive thectlen.  2) Overlap of Candidate Rings and Cell# critical problem in
Third, the threshold cannot be too small; otherwise, a sédenfign  the voting-based approach is to determine if a candidateawerlaps
location references has high probability to be determired @on- with a cell. We discuss how to determine this efficiently belo
consistent reference set. Suppose we need to check if the candidate ring at A overlags wi
Based on the above observations, we propose to choose the vahe cell shown in Figure 5(a). Lek,in(A) anddm..(A) denote the
for 7 with a hybrid method. Specifically, when the number ofninimum and maximum distances from a point in the cell to poin
location references is large (e.g., more than 8), we deterrthie A, respectively. We can see that the candidate ring does estap
value of based on Lemma 1. Specifically, we choose a value ofwith the cell only whend,,in(A) > ro OF dmaz(A) < 7:, Where
corresponding to a high cumulative probability (e.g., 0Mhen the 7, = max{0,— ¢} andr, = §+ ¢ are the inner and the outer radius
number location references is small, we perform simulatitoderive  of the candidate ring, respectively.
the actual distribution of the mean square error, and théerméne To computed,in and dma., We divide the target field into 9
the value ofr accordingly. Since there are only a small number dfgions based on the cell, as shown in Figure 5(b). It is easy t
simulations to run, we believe this approach is practical. see that given the center of any candidate ring, we can dieterm
the region in which it falls with at most 6 comparisons betwéae
coordinates of the center and those of the corners of the\&#len
In this approach, we have each location reference “vote”hen tthe center of a candidate ring is in region 1 (e.g., point A iguFe
locations at which the node of concern may reside. To fatdit 5(b)), it can be shown that the closest point in the cell to Ahis
the voting process, we quantize the target field into a grideds, upper left corner, and the farthest point in the cell from Athe
and have each sensor node determine how likely it is in eath dewer right corner. Thusd,.in(A) and dma-(A) can be calculated
based on each location reference. We then select the celifs) accordingly. These two distances can be computed similahign
the highest vote and use the “center” of the cell(s) as thenattd the center of a candidate ring falls into regions 3, 7, and 9.
location. To deal with the resource constraints on sensdesiowe Consider point B in region 2. Assume the coordinate of poimns B
further develop an iterative refinement scheme to reducetthrage (x5, ys). We can see that... (B) = ys —y2. Computingd,naz(B)
overhead, improve the accuracy of estimation, and make dtiegv is a little more complex. We first need to checkaifs — 1 >
scheme efficient on resource constrained sensor nodes. xo — xp. If yes, the farthest point in the cell from B must be
1) The Basic Schemeifter collecting a set of location referencesthe lower left corner of the cell. Otherwise, the farthesinpan
a sensor node should determine the target field. The nodesddag the cell from B should be the lower right corner of the cell.u$h
first identifying the minimum rectangle that covers all tloedtions we haved,,..(B) = \/(maX{mB — 1,22 —zB})? + (yB —y1)2.
declared in the location references, and then extendisgréisiangle These two distances can be computed similarly when the rcehte
by R,, where R, is the maximum transmission range of a beacoeandidate ring falls into regions 4, 6, and 8.
signal. This extended rectangle forms the target field, wbmntains Consider a point C in region 5. Obviousl¥,..:»(C) = 0 since

C. Voting-Based Location Estimation
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Fig. 5. Determine whether a ring overlaps with a cell

point C itself is in the cell. Assume the coordinate of point Menign location references. For example, in Figure 4, thelidate
is (z¢,yc). The farthest point in the cell from C must be oneing centered at point D will not be used in the second iterati
of its corners. Similarly to the above case for point B, we may The iterative refinement process should terminate when iaedes
check which point is farther away from C by checkimg — z1 >  precision is reached or the estimation cannot be refined.fdineer
z2 —xc andye — y1 > y2 — y.. As a result, we getl,,..(C) = condition can be tested by checking if the side lengtrof each
\/(max{mc — 21,22 — Tc})? + (max{te — y1,y2 — ye )2 cell is less than a predefined threshdldwhile the latter condition
Based on the above discussion, we can determine if a cell agcah be determined by checking whethBrremains the same in
a candidate ring overlap with at most 10 comparisons and a féwo consecutive iterations. The algorithm then stops ariduts the
arithmetic operations. To prove the correctness of the@bpproach estimated location obtained in the last iteration. It isye@ssee that
only involves elementary geometry, and thus is omitted. the algorithm will fall into either of these two cases, andshwill
For a given candidate ring, a sensor node does not have té chabvay terminate. In practice, we may set the desired patitd 0
all the cells for which it maintains voting states. As showrFigure in order to get the best precision.
5(c), with simple computation, the node can get the outenbimg ) )
box centered at A with side leng@(J + ¢). The node only needs to D- Security Analysis
consider the cells that intersect with or fall inside this bigloreover, Both proposed techniques remove the effect of the malicious
the node can get the inside bounding box with simple comjmmat |ocation references from the final location estimation wtikere
which is centered at A with side lengtf2(s — ¢), and all the cells are more benign location references than the malicious. ohes
that fall into this box need not be checked. defeat the attack-resistant MMSE approach, the attacksr tha
3) lterative RefinementThe number of cells\/ (or equivalently, distribute to a victim node more malicious location refes than
the quantization stefi) is a critical parameter for the voting-basedhe benign ones, and control the declared locations andhysiqal
algorithm. It has several implications to the performandeoor features (e.g., signal strength) of beacon signals so lieainalicious
approach. First, the large¥/ is, the more state variables a sensolocation references are considered consistent. To defieavdting-
node has to keep, and thus the more storage is required. gagben based approach, the attacker needs similar efforts so hieatill
value of M (or L) determines the precision of location estimationcontaining the attacker’s choice gets more votes than thasgining
The largerM is, the smaller each cell will be. As a result, a sensahe sensor’s real location.
node can determine its location more precisely based onvtap  An attacker has two ways to satisfy the above conditions r@en
of the cells and the candidate rings. to defeat our techniques). First, the attacker may comm®méacon
However, due to the resource constraints on sensor nodes, filodes and then generate malicious beacon signals. Sinbeaabn
granularity of the partition is usually limited by the mema@wvailable packets are authenticated, and a sensor node uses at mostatien
for the voting state variables on the nodes. This puts a Harit | reference derived from the beacon signals sent by each heacie,
on the accuracy of location estimation. To address this lpnob the attacker needs to compromise more beacon nodes thaartigsn b
we propose arterative refinemendf the above basic algorithm to beacon nodes from which a target sensor node may receiverbeac
achieve fine accuracy with reduced storage overhead. signals, besides carefully crafting the forged beaconadsgn
In this version, the number of cell3/ is chosen according to  Second, the attacker may launch wormhole attacks [13] (@aye
the memory constraint in a sensor node. After the first rounthe® attacks) to tunnel benign beacon signals from one area tihendn
algorithm, the node may find one or more cells having the &rgethis case, the attacker does not have to compromise anyrbeade,
vote. To improve the accuracy of location estimation, threseenode though he/she has to coordinate the wormhole attacks. Tondéma
then identifies the smallest rectangle that contains altétis having such threats, we may use wormhole detection methods sudchkstp
the largest vote, and performs the voting process againeXanple, leashes [13] or directional antennae [12]. As a result, difScult
in Figure 4, the same algorithm will be performed in a reckangfor an attacker to launch such attacks without being dedecte
which exactly includes the 4 cells having 3 votes. Note that later Our techniques certainly have a limit. In an extreme casa| the
iteration of the basic voting-based algorithm, a locatieference beacon nodes are compromised, our techniques will fail. dvew
does not have to be used if it does not contribute to any of ¢fle ¢ the proposed techniques offer a graceful performance datioca
with the highest vote in the current iteration. as more malicious location references are introduced. itrast, an
Due to a smaller rectangle to quantize in a later iteratiba,dize attacker may introduce arbitrary location error with a &ngalicious
of cells can be reduced, resulting in a higher precision.édeer, location reference in the previous schemes. To further dngrthe
a malicious location reference will most likely be discatdsince security of location discovery, other complementary medras
its candidate ring usually does not overlap with those @erifrom (e.g., detection of malicious beacon nodes) should be used.




E. Simulation Evaluation

This subsection presents the simulation results for botipgsed
schemes. The evaluation focuses on the improvement on thesay
of location estimation in hostile environments.

Evaluation of Voting-Based Scheme In the simulation, we
set M = 100, which implies 100 Bytes memory for the voting
variables, andS = 0 to get the minimum location estimation error
achievable by this method. Figure 7 compares the accuradieof
Three attack scenarios are considered. The first scenamgidess basic MMSE method and our voting-based scheme under differe

a single malicious location reference that declares a witoogtion types of attacks. We can clearly see that the accuracy ofitoca
e meters away from the beacon node’s real location. (An agtackestimation is improved significantly in our scheme. In addit

may also modify the distance componentn a location reference, Unlike the attack-resistant MMSE scheme, the voting-baseme

which will generate a similar impact.) In the second scematiere can tolerate multiple (colluding or non-colluding) matios location

are multiple non-colluding malicious location referencasd each references more effectively.

of them independently declares a wrong location that iseters

away from the beacon node’s real location. In the third sdena
multiple colluding malicious location references are dédesed. In

this case, the malicious location references declare fatsgions by

coordinating with each other to create a virtual locatiometers

away from the sensor’s real location. Thus, the maliciowstion

references may appear to be consistent to a victim node.

In all simulations, a set of benign beacon nodes and a fewcina$ EERa—=== ===
beacon nodes are evenly deployed i80a: x 30m target field. The o e a m w wm w n w6
non-beacon sensor node is located at the center of thist thepk Location error ntroduced by mlicious beacons
We assume the maximum transmission range of beacon sighal&ig. 7. Performance of the voting-based schemg £ 100, S = 0). Unit
R, = 22m, so that the non-beacon node can receive the beac®frineasurement for andy axes: meter
signal from every beacon node located in the target field. ¥gerae Note that the curves for the voting-based scheme in Figuravé h
the entire deployment field is much larger than this targdtl 8 a bump when the location error introduced by malicious locat
that an attacker can create a very large location estimaioor references is around 10m. This is because the malicioudidaca
inside the deployment field. Each malicious beacon nodeadesila references are not significantly different from the benigoation
false location according to the three attack scenariosigs®l above. references around this point, and our scheme cannot caehpitield
We assume a simple distance measurement error model. Thiag is the effect of malicious location references. Nevertheldss attacker
distance measurement error is uniformly distributed betwee and  will not be able to introduce large location estimation esriay simply
€, where the maximum distance measurement eri@set toe = 4m. creating large location errors. As a result, the locatiotineion

Due to the space limit, we only show some evaluation resulégrors are always bounded even if there are malicious atteok
below. More results are included in our extented versiof.[17 addition, we also note that the performance of voting-basdme

Evaluation of Attack-Resistant MMSE: In the simulation, we under attacks is usually better than the performance of MiS®Eme
use the MMSE-based method proposed in [26], which we call thgithout attacks. This is because we used the MMSE-basedoaheth
basic MMSE methado perform the basic location estimation. Oulin [26] in the simulation, which estimates a node’s locatipnonly
attack-resistant MMSE method is then implemented on thesbagpproximatelyminimizing the mean square error.
of this method, as discussed in Section II-B. We set= 0.8¢
according to Figure 3, which guarante®benign location references
are considered consistent with probability 0$99.
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F. Implementation and Field Experiments

We have implemented both schemes on TinyOS [10], an opgratin
system for networked sensors. These implementations egetéa
O T e witrou oo P at MICA2 motes [4] running TinyOS. The attack-resistant MBS
ST N 3 e is implemented based on the basic MMSE method proposed in
e wtn 1t ous [26]. However, our implementation of the basic MMSE method
is simplified by only using the location coordinates (withdbhe
ultrasound propagation speed, which is not necessary irstodyy).

X1

———AR-MVBE wi th 3 non-col | udi ng
€ with 3 col | uding

Location estimation error

Scheme ROM (bytes) | RAM (bytes)
N R DU DURUE DTS SO ‘ MMSE 2034 286
’ Li)ocat\g: err3gr in?orodu:gd by60m| i : ous 8(I;r-.‘acogrl\)s o AR-MMSE 3226 396
\oting-Based 4488 174
Fig. 6. Performance of attack-resistant MMSE. = 0.8¢. Unit of TABLE |

measurement fox andy axes: meter

Figure 6 shows the performance of the attack resistant MMSE
method and the basic MMSE-based method when there are maliTable | gives the code size (ROM and RAM) for these implementa
cious location references. It indicates that the attasistant MMSE tions on MICA2 platform. Table | is obtained by assuming astri®?
reduces the location estimation error significantly coragawith the location references. More location references will inseethe RAM
basic MMSE-based method. It is worth noting that the perforoe  size of the program, but the increased RAM is only requiredae
becomes worse when there are multiple malicious locatifereaces. the additional location references.
This is because multiple malicious location referencegeéislly Figure 8 shows the average execution time of the basic MMSE,
when they collude together, make the filtering of malicioosation the attack-resistant MMSE, and the voting-based schemesealn
references more difficult. It is possible that a few benigoaton MICA2 motes. These data are collected by counting the nusnber
references are removed. of CPU clock cycles spent on location estimation. The |acati

CODE SIZE(ASSUME12 LOCATION REFERENCES M = 100)



T tionship between the values of this field and the distancevess

two nodes. For each given distance, we computed the averfage o
this values om20 observations. We then built a table that contains
distances and the corresponding average readings. Durendieid
experiments, when a sensor node receR@packets from a beacon
node, it computes the average of thteengthvalues, and estimates
o the distance with interpolation according to this tabler Example,

0.001 - - - -

Time (sec)
[=}
s

o
Q
2

4 6 8 10 12 14 1 18 2 2 2 2 if the average reading falls in between two adjacent points;, d;)
Nunber of Tocation references and (vi+1,ds+1) in the table, the sensor computes the distance
Fig. 8. Average execution time on MICA2 motes £ 4m, 7 = 0.8, d = di—i—%. We sete to 4 feet, which is the maximum
M =100 and S = 0) distance measurement error observed in the experiment.
12 3 4 5 6 7 8 9 10 Figure 10 shows the performance of the proposed methods and
1 N Boacon . the basic MMSE method in the field experiment. For the first two
R .2 é Boacon attack scenarios, we can see that the proposed methodsleeatao
. @8) Bescon malicious location references quite effectively. The perfance in
. 5,2:) the third scenario is worse than the first two cases. The neiagbat
on L the non-beacon nodes has onlybenign location references, bgt
° ) Cfsm—_' colluding location references. However, we still see thatlbcation
° estimation error drops when the location errors introdubgdthe
7 ® Beacon malicious attacks are above certain thresholds. Ovetsdl |dcation
ID=6 . N . .
8 @1 ©-Boacon estimation errors caused by malicious attacks are boundheah whe
s o Beacon @8) proposed techniques are used, while the errors can beaailgitarge
1 ©9 when the basic MMSE method is used.
Fig. 9. Target area of field experiment. The field experiment further shows that our methods are effici

and effective in tolerating malicious attacks. It also cadées that our

references used in the experiment are generated from theasiom  ethods are promising for the current generation of sensovarks.
in Section II-E. We can see that the basic MMSE method has the

least execution time. The attack-resistant MMSE schemeldss I1. RELATED WORK

computational cost than the voting-based scheme when theenwof  Many range-based localization schemes have been proposed f
location references is small; however, when there are laugebers sensor networks [5], [19], [20], [26], [27]. Savvides et @kveloped

of location references (e.g., 20), it takes the voting-asethod AHLoS protocol based on Time Difference of Arrive [26], whic
less time to finish than the attack-resistant MMSE metho®nFr was extended in [27]. Doherty et al. presented a localinaicheme
Table I and Figure 8, we conclude that our proposed techsique pased on connectivity constraints and relative signalembktween
practical for the current generation of sensor networkgims of the neighbors [5]. Angle of Arrival is used to develop localipatscheme
storage and the computation overheads, especially whdodagons i [20] and [19]. Range-free schemes are proposed to prduich-

of sensor nodes do not change frequently. ization services for the applications with less precisiequirements

To further study the feasibility of our techniques, we perfed [2], [9], [18], [21]. Bulusu, Heidemann and Estrin proposéul
an outdoor field experiment. In this experiment, eight MICABtes estimate a sensor’s location as the centroid of all locationthe
were deployed in a0 x 10 target field, where each unit of distance iseceived beacon signals [2]. Niculescu and Nath proposedsé&o
4 feet, as shown in Figure 9. The sensor node with ID O is cordiiju the minimum hop count and the average hop size to estimate the
as a non-bheacon node, which is located at the center of thle Al  distance between nodes and then determine sensor nodesibiec
the other sensor nodes are configured as beacon nodes. accordingly [21]. None of these schemes will work properlew

We considered three attack scenarios in this experimenielfirst there are malicious attacks. The techniques developed]rajfi [16]
scenario, beacon node 1 is configured as a malicious beadertinat can deal with malicious attacks to a certain extent. Howaveither
always declares a location feet away from its real location in the of them can ensure correct location discovery when beacaleso
direction away from the non-beacon node. In the second soenaare compromised. The techniques proposed in this papeesslthis
beacon nodes, 2 and 3 are configured as malicious beacon nodegroblem by tolerating malicious beacon signals.

Each of these three nodes declares a locatideet away from its A robust location detection is developed in [24]. Howevecainnot
real location in the directions away from the non-beaconendd be directly applied in sensor networks due to its high coripur
the third scenario, three malicious beacon notleg, and 3 work and storage overheads. A voting-based scheme named Ctiapera
together to create a virtual location. Each of these threlesideclares Location Sensing (CLS) was proposed in [8]. However, CLS is
a false location by increasing its horizontal coordinate:liget. This designed for powerful nodes (e.g., PDAs), while our scheunthér
actually creates a virtual location in the horizontal axifeet away uses iterative refinement to improve the performance witkallsm
from the non-beacon node’s real location. This is illugidein Figure storage overhead. Therefore, our technique can be imptechemd

9 by the horizontal arrow starting from the non-beacon node. executed efficiently on resource constrained sensor nodes.

To measure the distancé) between sensor nodes, we use a simple Security in sensor networks has attracted a lot of attentiahe
RSSI based technique. Note that the Active Message protocol past several years. To provide practical key managemesgarehers
TinyOS provides a reading in thstrength field for the MICA2 have developed key pre-distribution techniques [3], [6]]. [To
platform. This value is returned in every received packet ean enable broadcast authentication, a protocol napiEESLA has been
be used to compute the signal strength. Thus, we performed explored to adapt to resource constrained sensor netw@®s [
experiment before the actual field experiment to estimageréia- Security of sensor data has been studied in [11], [23]. A#@gainst
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routing protocols in sensor networks and possible countasures [10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D.E. Culler, aikd S. J. Pister.
were investigated in [14]. The research in this paper addgeanother System architecture directions for networked sensorsArrhitectural
fundamental security problem that has not drawn enougintaite Support for Programming Languages and Operating Systeages 93—

104, 2000.
[11] L. Hu and D. Evans. Secure aggregation for wireless adsv In
IV. CONCLUSION AND FUTURE WORK Workshop on Security and Assurance in Ad Hoc Netwdldsuary 2003.

. ) ‘12] L. Hu and D. Evans. Using directional antennas to prewesrmhole
In this paper, we proposed an attack-resistant MMSE-based attacks. InProceedings of the 11th Network and Distributed System
cation estimation and a voting-based location estimatemhrique Security Symposiunpages 131-141, February 2003.
to deal with attacks in localization schemes. We have impleied [13] Y.C. Hu, A. Perrig, and D.B. Johnson. Packet leashes: efense

: : . against wormhole attacks in wireless ad hoc networksrboteedings of
the proposed techniques on MICA2 motes [4] running TinyOd,[1 INFOCOM 2003 April 2003.

and evaluated them through both simulation and field exgems [14] c. Karlof and D. Wagner. Secure routing in wireless semsetworks:
Our experiences indicate that the proposed techniquesrangiging Attacks and countermeasures. Pnoceedings of 1st IEEE International
solutions for securing location discovery in wireless semgtworks. Workshop on Sensor Network Protocols and Applicatidviay 2003.

: : - 15] B. Karp and H. T. Kung. GPSR: Greedy perimeter statetesting for
O”f future research is tvyo-fold. .FIrSt’ we wil s_tudy hOW to[ ]wirelesspnetworks. IlProgceedings of ACI\)I/ Ir\)/lobiCom 200R000. ?
combine the proposed techniques with other protection B7@8MS [16] L. Lazos and R. Poovendran. Serloc: Secure range-miismt localiza-

such as wormhole detection. Second, our simulations areriexents tion for wireless sensor networks. ACM workshop on Wireless security
in this paper are conducted in small scales. It is very isterg to (ACM WiSe 2004)Philadelphia, PA, October 1 2004.
study the performance in a large scale. [17] D. Liu, P. Ning, and W.K. Du. Attack-resistant locati@stimation in

wireless sensor networks. Technical Report TR-2004-29thNGarolina
State University, Department of Computer Science, 2004.
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