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All emphasize low-cost components operating on 
shoestring power budgets for years at a time in potentially hostile 

environments without hope of human intervention.
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W
ireless sensor networks
combine processing, sens-
ing, and communications
into tiny embedded
devices. Peer-to-peer com-
munication protocols then
combine the individual
devices into an intercon-

nected mesh network where data is seamlessly
routed among all the nodes. These networks require
no external infrastructure and can scale to hundreds
or even thousands of nodes.

Here, we explore the standard sensor network plat-
forms where devices range from millimeter-size cus-
tom silicon to PDA-size integrated units. Critical to
the operation of any sensor network device is the abil-
ity to satisfy harsh always-on power requirements.
Unlike cell phones and wireless laptops, periodic
recharging is not possible for most wireless sensor net-
works. In many cases, devices are placed in the field
for years at a time without maintenance or human
intervention of any kind. 

In sensor networking, special-purpose sensor nodes
are purposely designed to sacrifice flexibility in order
to be as small and inexpensive as possible. Generic
sensor nodes provide a rich expansion interface for

making flexible connections with an array of simple
sensors. High-bandwidth sensor nodes contain the
built-in processing and communication capabilities
needed to deal with complex sensor streams, includ-
ing video and voice processing. Gateway nodes pro-
vide a critical link between the sensor network and
traditional networking infrastructures, including Eth-
ernet, the 802.11 communication standard, and
wide-area networks.

Traditional network abstractions are generally not
suitable for wireless sensor networks. Unlike tradi-
tional operating systems, operating systems for wire-
less sensor networks must tightly integrate wireless
connectivity. For example, in TinyOS [5], a special-
ized component model exploits advanced compiler
technology to simultaneously provide efficiency and
reliability [1, 5]. These same concepts are now being
incorporated into more traditional operating systems
in gateway-class and high-bandwidth nodes [2].

Here, we outline the four main platform classes
that have emerged in recent years in wireless sensor
networks; devices from multiple platform classes
often work together in real-world application deploy-
ments. We also review the architectural similarities of
sensor network devices, exploring the core differences
among classes, and consider the recent progression of
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sensor-network hardware, extrapolating future capa-
bilities in future devices.

Platform Classes
Initial deployment experience has shown that sensor
network systems require a hierarchy of nodes start-
ing at low-level sensors and continuing up through
high-level data aggregation, analysis, and storage
nodes (see Figure 1). This tiered architecture is com-
mon in virtually all sensor networks and is best illus-

trated by example.
Consider a sensor network
for an advanced security sys-
tem in which a majority of

the sensors cover window breakage, contact closure,
and motion detection. The quantity and range of
locations for these simple sensors require that they be
battery powered. They are complemented by a hand-
ful of more advanced sensors, including cameras and
acoustic and chemical detectors, placed in key loca-
tions. Both simple and complex sensor data is routed
over a mesh network into a building-monitoring-and-
control facility that provides a continuious monitor-
ing capability. 

The sensors placed on windows and doors for
intrusion detection are examples of generic sensing
devices. Their function is simple and specific and
requires long-term battery operation. Moreover, their
on-board processing and communication rates are
minimal. In contrast, acoustic, video, and chemical
sensors are examples of high-bandwidth nodes requir-
ing more computational resources and communica-
tion. They may, in some cases, require battery power

but often need to be plugged into the public power
system for long-term operation. 

In addition to traditional security applications,
wireless sensor networks are being designed to track
mobile assets, as well as personnel, through attached
tiny, low-cost security tags (mini-motes). These spe-
cial-purpose sensor nodes are synonymous with
Smart Dust [8], or cubic-millimeter-scale devices sup-
ported by extremely limited energy resources. They
could trigger an alarm when an asset leaves a facility

without authorization. Moreover,
they must be highly integrated and
very inexpensive. 

In security systems, the mesh
network of sensors is likely to have
one or more end points containing
a database or other aggregation
software designed to process and
store individual sensor readings.
These head, or gateway, nodes
provide an interface into many
existing types of networks.

Table 1 outlines typical operat-
ing characteristics of the four
classes of nodes—specialized sens-
ing platform, generic sensing plat-
form, high-bandwidth sensing,
and gateway—implemented with
state-of-the-art technology. The
Spec node the author Hill
designed at the University of Cali-

fornia, Berkeley, is representative of the special-pur-
pose sensor class. It is a single-chip node designed
specifically for ultra-low-cost production and low-
power operation. Requiring just 2.5 mm � 2.5 mm
of silicon, it includes data RAM, processing, and
communication capabilities. In order to reduce size
and complexity, the Spec node was built so it would
interface only with simple sensors and communicate
only over short distances. The prototype versions
(produced February 2003) contained only a transmit-
ter (without a receiver); future versions will contain a
full transceiver. The Spec node is an ideal asset tag;
combined with a tiny battery, it is capable of periodi-
cally reporting its presence for years to come.

The Berkeley Motes are a notable example of a
general-sensing-class device, used today by more than
100 research organizations. The Mica2 is the most
recently developed commercially available version,
constructed from off-the-shelf components to pro-
vide the greatest possible flexibility (see Figure 2). It
includes a large interface connector allowing its
attachment to an array of sensors. By providing a
large number of I/O pins and expansion options, the
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Thousands of
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Figure 1. Hierarchical 
deployment of a wireless 
sensor network. Each platform
class handles different types
of sensing. 



Mica2 is a perfect sensor node option for any applica-
tion where size and cost are not absolutely critical. It
is, for example, easily connected to motion detectors
and door-and-window sensors as the foundation of a
building security system. Moreover, the Mica2 is
capable of receiving messages from Spec nodes
attached to high-value assets, including personal com-
puters and laptops, at risk of being stolen. The mem-
ory and processing power available on the Mica2 node

easily handles the computa-
tion required to keep track
of several dozen Spec-based
asset tags.

While the Mica2 node is easily interfaced by hard-
ware engineers to an array of sensors, it cannot handle
the high bandwidth of data coming from complex
sensors. When attempting
to process video or high-
bandwidth audio, the
Mica2 node falls short. The
iMote, developed by Intel
Research (first produced in
May 2003), is designed to
be a high-bandwidth sensor
platform, including signifi-
cantly more on-chip RAM
and processing power, as
well as a Bluetooth-based
radio capable of communi-
cation rates in excess of
500Kbps. 

The Stargate platform
developed by Intel and sold
by Crossbow Technology is representative of gateway-
class devices and includes a 400MHz X-scale architec-
ture-based processor (also developed by Intel) with
several megabytes of RAM and up to gigabytes of per-

sistent storage. It is capable of interfacing directly to
Mica2- and iMote-based devices and bridging the
data from low-power mesh networks to traditional
networks, including 802.11, Ethernet, and wide-area
varieties. Moreover, the processing and memory pro-
visions on the Stargate node allow it to act as a Web
front-end to sensor networks where users access its
data via a Web browser. 

The operating system running on a particular plat-
form must be matched to the plat-
form’s underlying hardware
capabilities. For special-purpose
and generic-sensor-class devices, a
special operating system called
TinyOS (developed at the Univer-
sity of California, Berkeley) is
designed to run on platforms with
limited CPU power and memory
space. Unlike many embedded
operating systems, it provides tight
integration between wireless con-
nectivity and networking func-
tions. However, as platform
capabilities improve with, for
example, the Stargate platform,
more advanced operating system

support is required to meet the demands of more
complex applications. Multiprocessing, preemptive
task switching, and even virtual memory support
become desirable when managing multiple system
functions. The Stargate node runs an embedded ver-
sion of the Linux operating system. In addition to
providing a range of system capabilities, Linux pro-

vides a suite of device dri-
vers for enabling gateway
nodes to bridge to legacy
networks. Drivers for
Ethernet cards and
802.11 wireless network-
ing cards are essential for
allowing the gateway
nodes to bridge to a
range of wide-area net-
working systems. 

Architectural Differences
The overall architectures of the four sensor-network
platform classes are remarkably similar despite sig-
nificant differences in device capabilities. The archi-
tectural similarity follows from the requirement that
they seamlessly integrate wireless networking. Net-
work support must be transparent and self-configur-
ing to allow sensor networks to scale in size and
complexity. In contrast, their core differences come
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Node 
Type

Sample
“Name”
and Size

Typical Application
Sensors

Radio
Bandwidth
(Kbps)

MIPS

Flash

RAM

Typical
Active
Energy
(mW)

Typical
Sleep
Energy
(uW)

Typical
Duty
Cycle
(%)

Specialized
sensing
platform

Generic
sensing
platform

High-
bandwidth
sensing

Gateway

Spec

mm3

Mote

1-10cm3

Imote

1-10cm3

Stargate

>10cm3 

Specialized low-
bandwidth sensor
or advanced RF tag

General-purpose
sensing and
communications relay

High-bandwidth
sensing (video,
acoustic, and
vibration)

High-bandwidth
sensing and
communications
aggregation
Gateway node

<50Kbps

<100Kbps

~500Kbps

>500Kbs–
10 Mbps

< 5

< 0.1Mb

< 4Kb

< 10

< 0.5Mb

< 10Kb

< 50

< 10Mb

< 128Kb

< 100

< 32Mb

< 512Kb

1.8V*10–
15mA

3V*10–
15mA

3V*60mA

3V*200mA

1.8V *1uA

3V *10uA

3V *100uA

3V *10mA

0.1–
0.5%

1–2%

5–10%

>50%

Table 1. Typical operating
characteristics of the four
classes of sensor-network
nodes. 
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Figure 2. The Mica2 node is
the most popular sensor-net-
work research platform. The

large expansion connector
allows it to be connected to a

wide range of sensors.



from their developers’ desire to optimize the power
consumption of each platform for a certain class of
application. Some of the fundamental decisions
that must be made by application engineers include
the amount of on-board memory, whether to include
flash memory, the amount of CPU processing power,
and the type and bandwidth of the wireless link.
Since most implementations
employ off-the-shelf compo-
nents, some of these decisions are
dictated by the availability of
suitable parts. In the end, cost
and power consumption are
major factors influencing the
final design of any given sensor
node.

A
major difference
between sensor-
network nodes
and more tradi-
tional comput-
ing platforms,
including PCs,
PDAs, and even

embedded devices, is the extreme
emphasis in sensor networks on
power management. A large
number of applications require
battery-powered operation for
extended periods of time. In
order to manage power effi-
ciently, each subsystem of the
platform is powered individually.
For example, a radio should have
to be turned on only during
active communication, and it
should be possible to shut down
the CPU between processing
requests. Similarly, it should be
possible to power down the sen-
sor and I/O subsystems individu-
ally when not in use. The
operating system, TinyOS in
many cases, controls the activity and power state of
the various subsystems. The exact timing of the
power-down cycles is determined by a number of fac-
tors, including application requirements and the par-
ticular hardware being used. In TinyOS, power
management pervades every aspect of the system,
and all components are designed to save power when
not active.

To facilitate proper power management, sensor-
network platforms give applications direct, fine-grain

control over the underlying hardware. Traditional
layered abstractions for both network [2] and sensor
stacks lead to inefficiencies in power usage. Recent
research suggests a common approach to solving this
challenge across the range of platforms [2, 5] by way
of three additional architectural components: 

• A general-purpose component framework that
eliminates layering;

• Hardware functions that are exposed to applica-
tions and middleware; and 

• Virtualization, or a unifying layer of abstraction,
and interpreted scripts, or a simplified program-
ming process, for writing sensor network 
applications.

On mote-class devices (such as Spec and Mica2),
TinyOS provides low-level hardware control through
a built-in component model that eliminates layering.
The software abstractions in TinyOS are designed to
allow application-level components direct access to
hardware as needed. While this capability is also
found in other embedded operating systems, it is gen-
erally not present in more traditional operating sys-
tems, including Linux.

Using Linux on gateway-class nodes (such as Star-
gate) requires additional support for precise hardware
control, so it was added by developers. On Stargate,
processor registers and general-purpose I/O lines are
made available to applications via special-purpose dri-
vers. In turn, sensor-network development environ-
ments (such as Emstar [2]) employ these drivers to
give applications control over the timing and state of
the hardware peripherals they need (see Figure 3). 

The TinyOS and embedded-Linux development
efforts have each embraced virtualization of process-
ing and communication resources to simplify the
sensor-network development process. One trade-off
in providing precise hardware control to application-
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level software is that hardware-
specific modules sometimes ren-
der sensor-network software
nonportable. TinyOS and Emstar
both feature hardware abstractions
that attempt to maintain portabil-
ity without sacrificing precise con-
trol. Each provides the option of
using high-level interpreters [2, 6,
7] to simplify application develop-
ment. However, researchers must
still determine how to ensure a
high degree of efficiency, along
with resource virtualization.

Platform Road Map
The recent research and develop-
ment of first-generation wireless
sensor network platforms is now
feeding back on itself to help sys-
tems engineers define a new gen-
eration of hardware better able to
meet network demands. Table 2
outlines the sensor network hard-
ware platforms available today. 

Hardware progression. Analyzing
the progression of sensor-network
hardware must account for the
influence of Moore’s Law on the
design and development of the
networks. For all platform classes
except special-purpose sensor
nodes, Moore’s Law promises an
increase in performance for a given
power budget. As shown in Table
2, the Mica2 node has roughly
eight times the memory and com-
munication bandwidth as its pre-
decessor, the Rene node, developed in 1999, despite
involving the same power and cost. The gateway and
high-bandwidth devices have achieved similar perfor-
mance jumps without significantly changing their
power or cost requirements. In contrast, the special-
purpose sensor nodes (such as Spec) use advances
derived from Moore’s Law to reduce their power con-
sumption and cost requirements while maintaining
the same performance level.

Part of the performance increase in the generic-sen-
sor-node class is due to new CMOS radios specifically
designed for low data rates and low power consump-
tion. In addition to improving raw radio performance
metrics, the communication interfaces provided by
low-power radio now include specialized hardware
support to help reduce the peak load placed on the

CPU. Low-power controllers can burst data out over
the RF channel at rates several times faster than with
the previous generation of radios. Moreover, early
hardware designs used the microcontroller to duty
cycle the radio and check for channel activity [3].
Next-generation radios to be released this year will
have built-in state machines that perform this opera-
tion automatically. 

Software and interface standards. Engineers and
researchers in the field of low-power wireless technol-
ogy are pursuing a protocol-standardization effort
aimed at allowing future devices to interoperate with
one another. The 802.15.4 standard provides a speci-
fication of the RF channel and signaling protocol to
be used. Built atop 802.15.4 is the Zigbee protocol, a
specification of the application-level communication
protocol between devices. To put Zigbee and
802.15.4 in perspective relative to the platforms we’ve
discussed here, 802.15.4 determines which radio
hardware to use, and Zigbee determines the content
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Node CPU Power Memory Radio Remarks

Spec
       
       2003

Rene
       
       1999

Mica-2
      
       2001

Telos
       
       2004

Mica-Z
       
       2004

BT Node

       2001

Imote 1.0

       2003

Stargate

       2003

Inrysnc
Cerfcube
       2003

PC104
nodes

4–8Mhz
Custom 8-bit

ATMEL
8535

ATMEGA
128

Motorola
HCS08

ATMEGA
128

ATMEL
Mega 128L
7.328Mhz

ARM
7TDMI 12-
48MHz

Intel
PXA255

Intel
PXA255

X86
processor

3mW
peak 
3uW 
idle

.036mW
sleep
60mW
active
.036mW
sleep

60mW
active

.001mW
sleep

32mW
active

50MW
idle

285MW
active

1mW
idle
120mW
active

3K RAM

512B RAM
8K Flash

4K RAM
128K Flash

4K RAM

4K RAM
128K Flash

128KB
Flash
4KB
EEPROM

4KB SRAM

64KB SRAM
512KB Flash

32KB Flash

64KNSRM

32KB Flash

64KB SRAM

32KB Flash
64KB SRAM

50–100Kbps

10Kbps

76Kbps

250Kbps

250Kbps

Bluetooth

Bluetooth 1.1

I/O and Sensors

I/O Pads on chip,
ADC

Large expansion
connector

Large expansion
connector

USB and 
Ethernet

Large expansion
connector

8-channel 10-bit
A/D, 2 UARTS

Expandable
connectors

UART, USB,
GPIO, 12C, SPI

2 PCMICA/CF,
com ports,
Ethernet, USB

Single CF card,
general-purpose 
I/O

PCI Bus

Full custom silicon,
traded RF range and
accuracy for 
low-power operation.

Primary TinyOS
development platform.

Primary TinyOS
development platform.

Supports IEEE 802.15.4
standard. Allows higher-
layer Zigbee stardard.

1.8V operation

Supports IEEE 802.15.4
standard. Allows higher-
layer Zigbee stardard.

Easy connectivity with
cell phones.

Supports TinyOS.
Multihop using
multiple radios/nodes.

Multihop using
scatternets, easy
connections to PDAs,
phones,TinyOS 1.0, 1.1.

Flexible I/O and small
form factor power
management.

Small form factor,
robust industrial
support, Linux and
Windows CE support.

Embedded Linux or
Windows support.

Special-purpose Sensor Nodes

Generic Sensor Nodes

High-bandwidth Sensor Nodes

Gateway Nodes

Serial 
connection

to
sensor

network

Table 2. Current 
sensor network 

platforms organized 
by device class.



of messages transmitted by each networked node. Fol-
lowing the availability of the first 802.15.4 radios in
early 2004, researchers have sought to develop
TinyOS drivers. When these drivers are completed
and released, existing sensor-network applications will
be able to take advantage of the new capabilities of the
802.15.4 chips.

Even as the standardization process advances, it is
not clear whether a comprehensive set of standard
protocols will ever be available to meet all application
requirements. Unlike traditional Internet applica-
tions—nearly all of which use TCP/IP—sensor-net-
work applications demand protocols that are
optimized for their unique communication patterns.
Additionally, the for-members-only nature of Zigbee
standards and other proprietary solutions impose
additional hurdles on any widespread sensor-network
standard-setting process and adoption. In this envi-
ronment, TinyOS’s ability to allow application devel-
opers to assemble custom protocols from individual
networking building blocks will continue to be the
preferred sensor-network development strategy.
Developers will likely start with generic TinyOS pro-
tocol implementations, then customize as needed to
satisfy application-specific requirements.

Conclusion
The age of ubiquitous sensing and actuation is being
fueled by Moore’s Law and the development of
advanced wireless sensor-networking platforms.
Hardware can be used to deploy data-collection net-
works capable of operating for years without main-
tenance in remote, often hostile, environments. As
capabilities improve, these systems will thus be able
to automatically act on sensor data to manage our
environment for us.

Most current sensor-networking deployments
include square-inch-size generic sensor devices that
represent an interconnected mesh tied to the Internet
through one or more gateway-class devices. More
advanced networks include high-bandwidth sensor
nodes capable of dealing with complex data streams,
including voice and video. Alternatively, they may
include tiny special-purpose sensor nodes that are just
millimeters on a side and weigh only a few grams
each. While the capabilities, cost, and size of each
class of device will change with technological
advances, these four fundamental classes of device will
likely remain for the foreseeable future. 

Integral to the performance of sensor-network
nodes is the software supporting them. Sensor-net-
work applications require precision control over the
underlying hardware in order to meet the strict power
limitations they must satisfy. Current development

efforts focus on two software platforms for use in wire-
less sensor networks. TinyOS provides the precise,
efficient, low-level control demanded by both general-
and special-purpose networking nodes. In contrast,
special kernel modifications have been added to Linux
to enable it to support gateway and high-bandwidth-
class device operation. Combined with the hardware
platforms, TinyOS and embedded Linux are together
being shaped into a powerful toolbox for building
wireless sensor-network applications. 
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