
Ž .Computer Networks 31 1999 805–822

Towards a taxonomy of intrusion-detection systems

Herve Debar), Marc Dacier 1, Andreas Wespi 2´
IBM Research DiÕision, Zurich Research Laboratory, Saumerstrasse 4, CH-8803 Ruschlikon, Switzerland¨ ¨

Abstract

Intrusion-detection systems aim at detecting attacks against computer systems and networks, or against information
systems in general, as it is difficult to provide provably secure information systems and maintain them in such a secure state
for their entire lifetime and for every utilization. Sometimes, legacy or operational constraints do not even allow a fully
secure information system to be realized at all. Therefore, the task of intrusion-detection systems is to monitor the usage of
such systems and to detect the apparition of insecure states. They detect attempts and active misuse by legitimate users of the
information systems or external parties to abuse their privileges or exploit security vulnerabilities. In this paper, we introduce
a taxonomy of intrusion-detection systems that highlights the various aspects of this area. This taxonomy defines families of
intrusion-detection systems according to their properties. It is illustrated by numerous examples from past and current
projects. q 1999 Elsevier Science B.V. All rights reserved.

Keywords: Security; Taxonomy; Intrusion-detection

1. Introduction

w xSince the seminal work by Denning in 1981 10 ,
many intrusion-detection prototypes have been cre-
ated. Sobirey maintains a partial list of 59 of them
w x58 . Intrusion-detection systems have emerged in the
field of computer security because of the difficulty
of ensuring that an information system will be free
of security flaws. Indeed, a taxonomy of security

w xflaws by Landwehr et al. 36 shows that computer

) Corresponding author. E-mail: deb@zurich.ibm.com.
1 E-mail: dac@zurich.ibm.com.
2 E-mail: anw@zurich.ibm.com.

systems suffer from security vulnerabilities regard-
less of their purpose, manufacturer, or origin, and
that it is both technically difficult and economically
costly to build and maintain computer systems and
networks that are not susceptible to attacks.

This paper introduces a taxonomy of intrusion-de-
tection systems at a time when commercial tools are
increasingly becoming available. Our taxonomy
draws examples from research prototypes as well as
commercial products to illustrate the most prominent
features of intrusion-detection systems. The paper
focuses on the TCPIPrUNIX world, for which the
largest number of prototypes and tools have been
developed. However, many of these products are
now also available for Windows NT, which has been
more widely deployed in organizations and has been
subjected to enhanced scrutiny by the security and

1389-1286r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S1389-1286 98 00017-6

()H. Debar et al.rComputer Networks 31 1999 805–822806

underground communities. An additional considera-
tion is that the intrusion-detection commercial mar-
ket has experienced considerable activity since
WheelGroup corporation was acquired by Cisco Sys-
tems, followed by the cascade acquisition of Haystack
Labs, Secure Networks and Trusted Information Sys-
tems by Network Associates.

This paper does not purport to be an exhaustive
survey of intrusion-detection tools, techniques, pro-
jects, and products. Several surveys have already

w xbeen published 2,13,18,37,39,40,42 , but the growth
of the intrusion-detection field has been such that
many new projects have appeared in the meantime.
Therefore, we shall present an updated image of the
intrusion-detection field, organized in a proposed
taxonomy for intrusion-detection systems, and illus-
trated with examples from past and current tools.

The paper is organized as follows: Section 2
describes the architecture of a generic intrusion-de-
tection system, Section 3 presents the taxonomy we
use to describe and classify intrusion-detection sys-
tems and examples of techniques and information
sources, Section 4 illustrates the concepts described
with a summary of existing tools and prototypes, and
Section 5 describes the reusability issue of
intrusion-detection systems and components.

2. Description of a generic intrusion-detection sys-
tem

2.1. Terminology

Ž .The term system a.k.a. target system is used
here to denote an information system being moni-
tored by an intrusion-detection system. It can be a
workstation, a network element, a server, a main-
frame, a firewall, a web server, an enterprise net-
work, etc.

The term audit denotes information provided by a
system concerning its inner workings and behavior.
Examples of audits include but are not limited to C2
audit trail, accounting, and syslog in the UNIX world,
Syslog in the MVS world, the event log in Windows
NT, and incident tickets in X25 networks. A descrip-
tion of some of these audits is given in Section 3.3.

The term component refers to a box inside an
intrusion-detection system. There are many kinds of
components, an overview of which is given in Sec-
tion 3.1.

2.2. Description

An intrusion-detection system dynamically moni-
tors the actions taken in a given environment, and
decides whether these actions are symptomatic of an
attack or constitute a legitimate use of the environ-
ment. Therefore, with respect to this definition, we
do not consider well-known tools such as Cops or
Satan to be intrusion-detection systems; we consider
them configuration analyzers, even though some of
their functionalities can be used to detect intrusions.

An intrusion-detection system can be described at
a very macroscopic level as a detector that processes
information coming from the system that is to be

Ž .protected Fig. 1 . This detector uses three kinds of
information: long-term information related to the

Žtechnique used to detect intrusions a knowledge
.base of attacks, for example , configuration informa-

tion about the current state of the system, and audit
information describing the events that occur on the
system. The role of the detector is to eliminate
unnecessary information from the audit trail and
present a synthetic view of the security-related ac-
tions taken by users. A decision is then made to
evaluate the probability that these actions can be
considered symptoms of an intrusion.

Fig. 1. Very simple intrusion-detection system.

()H. Debar et al.rComputer Networks 31 1999 805–822 807

2.3. Efficiency of intrusion-detection systems

The following three measures to evaluate the
efficiency of an intrusion-detection system have been

w xhighlighted in Ref. 48 :
Ø Accuracy. Inaccuracy occurs when an in-

trusion-detection system flags as
anomalous or intrusive a legiti-
mate action in the environment.

Ø Performance. The performance of an intru-
sion-detection system is the rate
at which audit events are pro-
cessed. If the performance of
the intrusion-detection system is
poor, then real-time detection is
not possible.

Ø Completeness. Incompleteness occurs when the
intrusion-detection system fails
to detect an attack. This mea-
sure is much more difficult to
evaluate than the others, be-
cause it is impossible to have a
global knowledge about attacks
or abuses of privileges.

In addition, we introduce two additional proper-
ties:
Ø Fault tolerance. An intrusion-detection system

should itself be resistant to at-
tacks, particularly denial of ser-
vice, and should be designed
with this goal in mind. This is
particularly important because
most intrusion-detection sys-
tems run on top of commer-
cially available operating sys-
tems or hardware, which are
known to be vulnerable to at-
tacks.

Ø Timeliness. An intrusion-detection system
has to perform and propagate its
analysis as quickly as possible
to enable the security officer to
react before much damage has
been done, and also to prevent
the attacker from subverting the
audit source or the intrusion-de-
tection system itself. This im-
plies more than the measure of

performance, because it not only
encompasses the intrinsic pro-
cessing speed of the intrusion-
detection system, but also the
time required to propagate the
information and react to it.

3. Taxonomy elements

There are a number of concepts we use to classify
intrusion-detection systems, presented in Fig. 2.

The detection method describes the characteristics
of the analyzer. When the intrusion-detection system
uses information about the normal behavior of the
system it monitors, we qualify it as behavior-based.
When the intrusion-detection system uses informa-
tion about the attacks, we qualify it as knowledge-
based.

BehaÕior on detection describes the response of
the intrusion-detection system to attacks. When it
actively reacts to the attack by taking either correc-

Ž . Žtive closing holes or proactive logging out possi-
.ble attackers, closing down services actions, then

the intrusion-detection system is said to be active. If
the intrusion-detection system merely generates

Ž .alarms including paging, etc. , it is said to be pas-
sive.

The audit source location distinguishes among
intrusion-detection systems based on the kind of

Fig. 2. Characteristics of intrusion-detection systems.

()H. Debar et al.rComputer Networks 31 1999 805–822808

input information they analyze. This input informa-
tion can be audit trails, system logs or network
packets.

Usage frequency is an orthogonal concept. Cer-
tain intrusion-detection systems have real-time con-
tinuous monitoring capabilities, whereas others must
be run periodically.

The three first axes are grouped in the category
‘‘functional characteristics’’ because they refer to
the internal workings of the intrusion-detection en-
gine, namely its input information, its reasoning
mechanism, and its interaction with the information
system. The fourth characteristic distinguishes RTID
Ž .Real-Time Intrusion Detection from scanners used
for security assessment. These scanners are some-
times attached to the intrusion-detection area, and we
must differentiate discriminate between them and
‘‘real’’ intrusion-detection systems.

3.1. Knowledge-based Õersus behaÕior-based intru-
sion detection

There are two complementary trends in intrusion
Ž .detection, 1 the search for evidence of attacks

based on knowledge accumulated from known at-
Ž .tacks, and 2 the search for deviations from a model

of unusual behavior based on observations of a
system during a known normal state. The first trend

w xis often referred to as misuse detection 30,35 or
w xdetection by appearance 59 . The second trend is

w xreferred to as anomaly detection 30 or detection by
w xbehaÕior 59 . In this paper, we use the term knowl-

edge-based intrusion detection for the first trend,
which we feel describes more precisely the technique
being used. The second trend is characterized by the
term behaÕior-based intrusion detection. Both terms
are defined more precisely in the following subsec-
tions.

3.1.1. Knowledge-based intrusion detection
Knowledge-based intrusion-detection techniques

apply the knowledge accumulated about specific at-
tacks and system vulnerabilities. The intrusion-detec-
tion system contains information about these vulner-
abilities and looks for attempts to exploit them.
When such an attempt is detected, an alarm is trig-

gered. In other words, any action that is not explic-
itly recognized as an attack is considered acceptable.
Therefore, the accuracy of knowledge-based intru-
sion-detection systems is considered good. However,
their completeness requires that their knowledge of
attacks be updated regularly.

Advantages of the knowledge-based approaches
are that they have the potential for very low false
alarm rates, and that the contextual analysis proposed
by the intrusion-detection system is detailed, which
makes it easier for the security officer using this
intrusion-detection system to take preventive or cor-
rective action.

Drawbacks include the difficulty of gathering the
required information on the known attacks and keep-
ing it abreast with new vulnerabilities and environ-
ments. Maintenance of the knowledge base of the
intrusion-detection system requires careful analysis
of each vulnerability and is therefore a time-consum-
ing task. 3 Knowledge-based approaches also have to
face the generalization issue. Knowledge about at-
tacks is very focused on the operating system, ver-
sion, platform, and application. The resulting intru-
sion-detection tool is therefore closely tied to a given
environment. Also, detection of insider attacks in-
volving an abuse of privileges is deemed more diffi-
cult because no vulnerability is actually exploited by
the attacker.

w x3.1.1.1. Expert systems. Expert systems 38 are used
primarily by knowledge-based intrusion-detection
techniques. The expert system contains a set of rules
that describe attacks. Audit events are then translated
into facts carrying their semantic signification in the
expert system, and the inference engine draws con-
clusions using these rules and facts. This method
increases the abstraction leÕel of the audit data by
attaching a semantic to it.

w xRule-based languages 21 are a natural tool for
modeling the knowledge that experts have collected
about attacks. This approach allows a systematic
browsing of the audit trail in search of evidence of
attempts to exploit known vulnerabilities. They are

3 For internal use, we maintain a vulnerability database to
which we add five or six new vulnerabilities and multiple attacks
weekly!

()H. Debar et al.rComputer Networks 31 1999 805–822 809

also used for verifying the proper application of the
security policy of an organization.

Also using expert systems but having additional
properties, model-based reasoning has been intro-

w xduced by Garvey and Lunt 20 . Knowledge about
the behavior of an attacker includes the attacker’s
goals, the actions required to reach these goals, and
whether his usage of the system reveals a certain
level of paranoia. The tool then scans the audits for
evidence of these actions and transitions.

This approach of using rule-based languages has
the following limitations:

ŽØ Knowledge engineering related to the com-
.pleteness issue . It is

difficult to extract
knowledge about at-
tacks. It is even more
difficult to translate this
knowledge into pro-
duction rules using au-
dits as input. Some-
times the information
required is not avail-
able in the audits. Also,
there may be many
ways to exploit a given
vulnerability, which
leads to as many rules.
ŽØ Processing speed related to the perfor-

.mance issue Use of an
expert system shell re-
quires that all audits be
imported into the shell
as facts, and only then
can reasoning take
place. Even though
some expert system
tools allow compilation
of rules, the overall
performance of the tool
often remains poor.

Owing to the processing speed issue, expert sys-
tem shells are used only in prototypes, as commer-
cial products have chosen more efficient approaches.

3.1.1.2. Signature analysis. Signature analysis fol-
lows exactly the same knowledge-acquisition ap-
proach as expert systems, but the knowledge ac-

quired is exploited in a different way. The semantic
description of the attacks is transformed into infor-
mation that can be found in the audit trail in a
straightforward way. For example, attack scenarios
might be translated into the sequences of audit events
they generate, or into patterns of data that can be
sought in the audit trail generated by the system.
This method decreases the semantic leÕel of the
attacks description.

This technique allows a very efficient implemen-
tation and is therefore applied in commercial intru-

w xsion-detection products 23,28,66 . The main draw-
back of this technique – like all knowledge-based
approaches – is the need for frequent updates to
keep up with the stream of new vulnerabilities dis-
covered, this situation being aggravated by the re-
quirement to represent all possible facets of the
attacks as signatures. This leads to an attack being
represented by a number of signatures, at least one
for each operating system to which the intrusion-de-
tection tool has been ported.

3.1.1.3. Petri nets. To represent signatures of intru-
w xsions, IDIOT 35 , a knowledge-based intrusion-de-

tection system developed at Purdue University, uses
Ž .Colored Petri Nets CPN . The advantages of CPNs

are their generality, their conceptual simplicity, and
their graphical representability. System administra-
tors are assisted in writing their own signatures of
attacks and integrating them in IDIOT. Owing to the
generality of CPNs, quite complex signatures can be
written easily. However, matching a complex signa-
ture against the audit trail may become computation-
ally very expensive.

Fig. 3 shows a simple example of a CPN that
issues an alarm if the number of unsuccessful login
attempts within one minute exceeds four. The transi-
tion, represented by a vertical bar, from state s1 to s2

Fig. 3. Four failed login attempts within one minute.

()H. Debar et al.rComputer Networks 31 1999 805–822810

can occur if there is a token in state s1 and an
unsuccessful login attempt. The time of the first
unsuccessful login attempt is stored in the token
variable T1. The transition from state s4 to state s5
can happen if there is a token in s4, an unsuccessful
login attempt, and the time difference between this
and the first unsuccessful login attempt is less than
60 s. Reaching the final state s5 corresponds to a
matched signature, and may therefore result in an
alarm being issued.

3.1.1.4. State-transition analysis. State-transition
analysis, a technique proposed by Porras and Kem-

w x w xmerer 47 , was implemented first in UNIX 27 and
later in other environments. The technique is concep-
tually identical to model-based reasoning; it de-
scribes the attacks with a set of goals and transitions,
but represents them as state-transition diagrams.

3.1.2. BehaÕior-based intrusion detection
Behavior-based intrusion-detection techniques as-

sume that an intrusion can be detected by observing
a deviation from normal or expected behavior of the
system or the users. The model of normal or valid
behavior is extracted from reference information col-
lected by various means. The intrusion-detection sys-
tem later compares this model with the current activ-
ity. If a deviation is observed, an alarm is generated.
In other words, anything that does not correspond to
a previously learned behavior is considered intrusive.
Therefore, the intrusion-detection system might be
complete, but its accuracy is a difficult issue.

Advantages of behavior-based approaches are that
they can detect attempts to exploit new and unfore-
seen vulnerabilities. They can even contribute to the
Ž .partially automatic discovery of these new attacks.
They are less dependent on operating-system-specific
mechanisms. They also help detect ‘‘abuse of privi-
leges’’ types of attacks that do not actually involve
exploiting any security vulnerability.

The high false alarm rate is generally cited as the
main drawback of behavior-based techniques be-
cause the entire scope of the behavior of an informa-
tion system may not be covered during the learning
phase. Also, behavior can change over time, intro-
ducing the need for periodic on-line retraining of the
behavior profile, resulting either in the unavailability

of the intrusion-detection system or in additional
false alarms. The information system can undergo
attacks at the same time the intrusion-detection sys-
tem is learning what is acceptable behavior. As a
result, the behavior profile contains intrusive behav-
ior, which is then not detected as anomalous.

3.1.2.1. Statistics. The most widely used tool to build
behavior-based intrusion-detection systems is statis-

w xtics 25,26,32 . The user or system behavior is mea-
sured by a number of variables sampled over time.
Examples of these variables include the login and
logout time of each session, the resource duration,
and the amount of processor-memory-disk resources
consumed during the session. The time sampling

Ž .period ranges from very short a few minutes to
Ž .long ;one month .

The original model keeps averages of all these
variables and detects whether thresholds are ex-
ceeded based on the standard deviation of the vari-
able. This model is too simple to represent the data
faithfully. Even comparing the variables of individ-
ual users with aggregated group statistics does not
yield much improvement. Therefore, a more com-

w xplex model has been developed 31,32 , which com-
pares profiles of long-term and short-term user activ-
ities. The profiles are regularly updated as the behav-
ior of users evolves. This statistical model is now
used in a number of intrusion-detection tools and
prototypes.

3.1.2.2. Expert systems. Expert systems have also
been used for behavior-based intrusion detection.
The following are two examples of approaches that
have been taken in this area:

w xØ Wisdom & Sense 64 is an intrusion-detection
tool that detects statistical anomalies in the behav-
ior of users. The tool first builds a set of rules that
statistically describe the behavior of the users
based on recordings of their activities over a
given period of time. Current activity is then
matched against these rules to detect inconsistent
behavior. The rule base is rebuilt regularly to
accommodate new usage patterns.

w xØ AT&T’s ComputerWatch 12 is a tool delivered
with AT&T’s UNIXrMLS multilevel security
operating system. This tool checks the actions of
users according to a set of rules that describe

()H. Debar et al.rComputer Networks 31 1999 805–822 811

proper usage policy, and flags any action that
does not fit the acceptable patterns.
This approach is useful for policy-based usage

profiles, but is less efficient than the statistical ap-
proach for processing large amounts of audit infor-
mation.

3.1.2.3. Neural networks. Neural networks are algo-
rithms that learn about the relationship between in-
put–output vectors and ‘‘generalize’’ them to obtain
new input–output vectors in a reasonable way. Neu-
ral networks could theoretically be used in knowl-
edge-based intrusion-detection tools to learn attack
traces and seek them in the audit stream. However,
as there is currently no reliable way to understand
what triggered the association, the neural network
cannot propose a reasoning or an explanation of the
attack.

Therefore, the main use of neural networks for
intrusion detection is to learn the behavior of actors

Ž .in the system e.g. users, daemons . Some equiva-
lence between neural network models and statistics

w xhas been demonstrated 19,54 . Therefore, the advan-
tage of using neural networks over statistics resides
in having a simple way to express nonlinear relation-
ships between variables, and in learningrretraining
the neural network automatically. Experiments have
been performed that use a neural network to predict

w xthe behavior of users 7 . These experiments have
shown that the behavior of UNIX root users is

Žextremely predictable owing to the very regular
activity generated by automatic system actions, dae-

.mons, etc. , that the behavior of most users is also
predictable, and that there is a very small fraction of
users whose behavior is unpredictable. Neural net-
works are still a computationally intensive technique,
and are not widely used in the intrusion-detection
community.

3.1.2.4. User Intention Identification. User Intention
w xIdentification 60 is a technique developed during

w xthe SECURENET project 59 . This technique mod-
els the normal behavior of users by the set of high-
level tasks they have to perform on the system.
These tasks are then refined into actions, which in
turn are related to the audit events observed on the
system. The analyzer keeps a set of tasks that each
user can perform. Whenever an action occurs that

does not fit the task pattern, an alarm is issued. To
our knowledge, this technique has only been used in
the SECURENET project.

3.1.2.5. Computer immunology. Computer immunol-
w xogy has been described by Forrest et al. 17 . This

technique builds a model of normal behavior of the
UNIX network services, rather than that of users.
This model consists of short sequences of system
calls made by the processes. Attacks that exploit
flaws in the code are likely to take unusual execution
paths. The tool first collects a set of reference audits,
which represents the appropriate behavior of the
service, and extracts a reference table containing all
the known ‘‘good’’ sequences of system calls. These
patterns are then used for live monitoring to check
whether the sequences generated are listed in the
table; if not, the intrusion-detection system generates
an alarm.

This technique has a potentially very low false
alarm rate if the reference table is exhaustive enough.
Extensions to reach that goal are currently being

w xdeveloped 8,9 . One drawback, however, is that this
technique does not protect against configuration er-
rors in a service, i.e. when attacks use legitimate
actions of the service to gain unauthorized access.

3.2. PassiÕe Õersus actiÕe intrusion detection

Most intrusion-detection tools are passive, mean-
ing that when an attack is detected, an alarm is
generated, but no countermeasure is actively applied
to thwart the attack. This made sense in a research
context, where such tools might possibly generate a
large number of false alarms, having a negative
impact on the availability of the system. We are
aware of only one tool with early countermeasure

w xcapability, NetProbe 52 , which monitors a network
for undesired connections and terminates them on
the spot.

A number of intrusion-detection tools based on
periodic analysis have had some active capability
added if a security issue was detected in the configu-
ration of the system. These tools generate scripts

Žboth to suppress the vulnerability by changing the
.permissions on a file system, for example and to

restore the system to its previous state. Hence the
application of a countermeasure is made safer by the

()H. Debar et al.rComputer Networks 31 1999 805–822812

capability of reverting quickly to a former state in
the event of an abnormality. An example of this

w x 4category of tools is Secure Network’s Ballista 55 .
With the arrival of intrusion-detection products,

the countermeasure element has become increasingly
w xpreeminent. Tools such as RealSecure 28 , Ne-

w x w xtRanger 66 , and WebStalker 23 now include the
capability of cutting connections that carry attacks,
blocking traffic from the hosts from which attacks
originate, or reconfiguring other equipment such as
firewalls or routers. Such proactive security strate-
gies are gaining momentum as intrusion-detection
products are becoming more reliable.

3.3. Host-based Õersus network-based intrusion de-
tection

Host-based intrusion detection is the first area to
have been explored in intrusion detection. When the
first intrusion-detection tools were designed, the tar-
get environment was a mainframe computer, and all
users were local to the system considered. This
simplified greatly the intrusion-detection task, as in-
teraction from outside was rare. The intrusion-detec-
tion tool analyzed the audit information provided by

w xthe mainframe, either locally 41 or on a separate
w xmachine 56 , and reported security-suspicious

events.
As the focus of computing shifted from main-

frame environments to distributed networks of work-
stations, several prototypes of intrusion-detection
systems were developed to accommodate network
issues. The first research in this area was to get
host-based intrusion-detection systems to communi-

w xcate 30 . In a distributed environment, users hop
from one machine to another, possibly changing
identities during their moves and launching their
attacks on several systems. Therefore, the local intru-
sion-detection system on the workstation has to ex-
change information with its peers. This exchange of
information takes place at several levels, either by
exchanging a raw audit trail over the network a la`

4 Ballista is not an intrusion-detection system, but a vulnerabil-
ity search tool similar to Satan. It analyzes the network to detect
vulnerabilities in its configuration, but does not perform real-time
monitoring.

w xStalker 23 , or by issuing alarms that come from a
w xlocal analysis 57 . Both solutions incur costs; trans-

ferring audits has a potentially huge impact on net-
work bandwidth, whereas processing them locally
affects the workstation’s performance.

With the widespread use of the Internet,
intrusion-detection systems have become focused on

Žattacks to the network itself. Network attacks DNS
spoofing, TCP hijacking, port scanning, ping of

.death, etc. cannot be detected by examining the host
audit trail, at least not easily. Therefore, specific
tools have been developed that sniff network packets
in real time, searching for these network attacks. In
addition, a number of classical attacks against servers
can also be detected by parsing the payload of the
packet and looking for suspicious commands. More-
over, these tools are often attractive for system ad-
ministrators because a small number of them can be
installed at strategic points in the network to cover
most of the current attacks.

Hybrid approaches have also been developed that
use both network-based and host-based intrusion-de-
tection tools in a multihost environment, i.e. a net-

w x w xwork of workstations. DIDS 57 uses Haystack 56
running on each host to detect local attacks and

w xNSM 24 to monitor the network. Both components
report to the DIDS Director, where the final analysis
is done.

As a side effect, more specialized intrusion-detec-
tion tools have emerged that monitor the most criti-
cal elements of an organization’s presence on the

ŽInternet. These products monitor firewalls NetS-
w x. Ž w x.talker 23 , web servers WebStalker 23 , routers

Ž w xNetRanger 66 or the newer documentation after
w x.Wheelgroup’s acquisition by Cisco 6 , looking for

evidence of attacks in the very specific context of
these network elements.

3.3.1. Host-based information sources
Host audit sources are the only way to gather

information about the activities of the users of a
given machine. On the other hand, they are also
vulnerable to alterations in the case of a successful
attack. This creates an important real-time constraint
on host-based intrusion-detection systems, which
have to process the audit trail and generate alarms
before an attacker taking over the machine can sub-

()H. Debar et al.rComputer Networks 31 1999 805–822 813

vert either the audit trail or the intrusion-detection
system itself.

3.3.1.1. System sources. All operating systems have
commands to obtain a snapshot of information on the
processes currently active on the computer. In a
UNIX environment, examples of such commands are
ps, pstat, Õmstat, getrlimit. These commands provide
very precise information about events because they
examine the kernel memory directly. However, they
are very difficult to use for continuous audit collec-
tion in intrusion-detection tools because they do not
offer a structured way of collecting and storing the
audit information.

3.3.1.2. Accounting. Accounting is one of the oldest
sources of information on system behavior. It pro-
vides information on the consumption of shared re-
sources by the users of the system. Resources are,
for example, processor time, memory, disk or net-
work usage, and applications launched. Accounting
is found everywhere, from network equipment to
mainframes to UNIX workstations. This omnipres-
ence has led some designers of intrusion-detection
prototypes to try to use it as an audit source.

In the UNIX environment, accounting is a univer-
sal source of information. The format of the account-
ing record is the same on all UNIXes, information is
compressed to gain disk space, and the overhead
introduced by the recording process is very small. It
is well integrated in modern operating systems, and
easy to set up and exploit.

However, accounting information also has a num-
ber of drawbacks, which make it untrustworthy for
security purposes. By default, accounting files are
sometimes located in the same disk partition as the
rtmp directory. Users then simply have to fill the
partition up to 90%, and accounting stops. Although
this is easily fixed, more important drawbacks in-
clude:
Ø Lack of parameterization. Accounting is either on

or off, but cannot be activated for selected users
only.

Ø Lack of precise time stamp. The date included in
the accounting record is precise to the second,
which does not allow the sorting and resequenc-
ing of actions. As commands in the accounting
file are logged in the order in which they termi-

nate, this lack of precision does not allow one to
obtain the list of commands in the order in which
they were actually submitted. Command sequenc-
ing might be important information for some
intrusion-detection techniques.

Ø Lack of precise command identification. Only the
first 8 characters of the name of the command
submitted by the user are stored in the accounting

Žrecord. Important path information to fully iden-
.tify the command and command line arguments

are lost. This would render the detection of Tro-
jan horses as well as the use of knowledge-based
intrusion-detection techniques impossible.

Ø Absence of system daemon activity. Accounting
keeps information only about binary executables
that terminate. In this case, continuously running

Žexecutables such as system daemons e.g. send-
.mail are never audited.

Ø Delay of obtaining information. The accounting
record is written when the application terminates.
Therefore, intrusion detection can only perform
damage control as the intrusion would already
have been carried out.
Owing to these drawbacks, accounting is not used

for knowledge-based intrusion-detection, and rarely
for behavior-based intrusion detection. The statistical

w xand neural network modules of Hyperview 7 made
use of accounting information as a complement to
security audit but not as a substitute for it.

3.3.1.3. Syslog. Syslog is an audit service provided
Žto applications by the operating system UNIX and

.others . This service receives a text string from the
application, prefixes it with a time stamp and the
name of the system on which the application runs,
and then archives it, either locally or remotely.

Syslog is not known for its security, as Syslog
daemons on several UNIX operating systems have

w xbeen the subject of CERT documents 4 showing the
exploitation of buffer overflows in the syslog dae-
mon to execute arbitrary code.

Syslog is very easy to use, which has prompted
many application developers to use it as their audit
trail. A number of applications and network services
use it, such as login, sendmail, nfs, http, and this
also includes security-related tools such as sudo,
klaxon, or TCP wrappers. Therefore, a few intru-
sion-detection tools have been developed that use

()H. Debar et al.rComputer Networks 31 1999 805–822814

information provided by the syslog daemon, an ex-
w xample of this approach being Swatch 22 . Although

syslog is a lightweight audit source that does not
generate a large amount of audit data per machine, a
large network can generate a large number of mes-
sages, very few of which are security-relevant.

w xSwatch 22 reduces the burden of the system admin-
Žistrator by correlating messages e.g. if several ma-

chines report that an nfs server is down, these reports
.would be aggregated into one and highlighting secu-

rity-related ones.

3.3.1.4. C2 security audit. The security audit records
all potentially security-significant events on the sys-
tem. As the US government has required that all
computer systems it purchases be certified at the C2

w xlevel of the TCSEC 63 , all operating system ven-
dors competing in this area have had to include an
‘‘accountability’’ feature. This translates into secu-
rity audit trails such as SUN’s BSM and Shield
packages, or AIX audit.

All these security audits have the same basic
principle. They record the crossing of instructions
executed by the processor in the user space and
instructions executed in the Trusted Computing Base
Ž . w xTCB space 63 . The rationale for this security
model sets forth that the TCB is trusted, that actions
in the user space cannot harm the security of the
system, and that security-related actions that can
impact the system only take place when users re-
quest services from the TCB.

In the UNIX environment, the TCB is basically
the kernel. Therefore, the audit system records the
execution of system calls by all processes launched
by the users. Compared with a full system call trace,
the audit trail provides a limited abstraction: context
switches, memory allocation, internal semaphores
and consecutive file reads do not appear in the trail.
On the other hand, there is always a straightforward
mapping of audit events to system calls.

The UNIX security audit record contains a great
deal of information about the events. It includes

Ždetailed user and group identification from the login
identity to the one under which the system call is

.executed , the parameters of the system call execu-
Žtion file names including path, command line argu-

.ments, etc. , the return code from the execution, and
the error code.

The main advantages of the security audit are:
Ø a strong identification of the user, its login iden-

Ž . Žtity, its real current identity, its effective set-
. Žuser-id bit identity, its real and effective set-
.group-id bit group identities;

Ø a repartition of audit events into classes to facili-
tate the configuration of the audit system;

Ø a fine-grain parameterization of the information
gathered according to user, class, audit event, or
failure or success of the system call;

Ø a shutdown of the machine if the audit system
Žencounters an error status usually a running out

.of disk space .
The main drawbacks of the security audit are:

Ø a heavy use of system resources when detailed
monitoring is requested. Processor performance
could potentially be reduced by as much as 20%,
and requirements for local disk space storage and
archiving are high;

Ø a possible denial-of-service attack by filling the
audit file system;

Ø difficulties to set up the audit service owing to the
number of parameters involved. Standard config-
urations delivered by vendors minimize the per-
formance hit by recording only classes of rare

Ževents administrative actions, logins, and lo-
.gouts . The auditing requirements of an

intrusion-detection tool demand more detailed in-
formation, e.g. about file accesses or processes
executed;

Ø difficulties to exploit the information obtained
owing to its size and complexity. This is com-
pounded by the heterogeneity of audit system
interfaces and audit record formats in the various
operating systems;

Ø parameterization of the audit system involving
Ž . Žsubjects users and actions system calls or

. Ževents , and only very rarely objects on which
.the action is performed . Important objects should

be monitored by an intrusion-detection tool, and
this is done primarily by scanning the entire trail.
The C2 security audit is the primary source of

audit information for an overwhelming number of
host-based intrusion-detection prototypes and tools
because it is currently the only reliable mechanism
for gathering detailed information on the actions
taken by users of an information system. Work was

w xconducted by several groups 21,43,49,62 to define

()H. Debar et al.rComputer Networks 31 1999 805–822 815

what should be in the security audit trail as well as a
common format for audit trail records, but this is an
ongoing research effort.

3.3.2. Network-based information sources

3.3.2.1. SNMP information. The Simple Network
Ž .Management Protocol SNMP Management Infor-

Ž .mation Base MIB is a repository of information
used for network management purposes. It contains

Žconfiguration information routing tables, addresses,
. Žnames and performanceraccounting data counters

to measure traffic at various network interfaces and
.at different layers of the network . This section

describes experiments performed within the SE-
w xCURENET project 59 to use SNMP V1 common

MIB for Ethernet and TCPrIP. Other projects also
target the use of SNMPv2 and v3 for security and

w xintrusion detection 33 .
The SECURENET project explored whether the

counters maintained in this MIB are usable as input
information for a behavior-based intrusion-detection
system. The starting point was to examine the coun-
ters at the interface level because this was the only
place where one can differentiate between informa-
tion sent over the wire and information transmitted
inside the operating system via the loop-back inter-
face. The prototype collected increments on the num-
ber of bytes and packets transmitted and received at
each interface every five minutes. The outcome of a
very simple averagerstandard deviation analysis of
this data was not satisfactory, as the standard devia-
tion was larger than the average for almost all sets
collected during daytime activity, and no correlation
was observed between the two interfaces.

MIB counters at higher levels of the network do
not contain much more information. On the IP, TCP
and UDP layers, the counters exhibited similar be-
havior but, owing to the larger number of counters at
these layers, we did not compute all possible correla-
tions. The ICMP counters show more consistency
with respect to their statistical modeling, but we have

w xnot tried ICMP attacks 3 to validate this approach.
This study shows that SNMP MIBs are a poten-

tially interesting candidate as an audit source for
intrusion-detection systems. The demise of SNMPv2
owing to a lack of consensus on the security features
has certainly dampened its interest to the intrusion-

detection community. However, with the rise of
SNMPv3, new projects are taking advantage of its

w xfeatures for intrusion-detection tools 33 .

3.3.2.2. Network packets. As the popularity of net-
work sniffers for gathering information has grown in
the attacker community, it is also regarded today as
an efficient means for gathering information about
the events that occur on the network architecture.
This is consistent with the trend of moving from a
centralized to a distributed computing model, and the
pace of change has even increased with the
widespread diversification of the Internet. Most ac-
cesses to sensitive computers take place today over a
network. Therefore capturing the packets before they
enter the server is probably the most efficient way to
monitor this server.

It is also consistent with the occurrence of denial-
of-service attacks. As companies put valuable infor-
mation on the Internet, and even depend on it as a
source of revenue, the prospect of simply shutting
down a web site creates an effective threat to the
organization running it. Most of these denial-of-
service attacks originate from the network and must
be detected at the network level, as a host-based
intrusion-detection system does not have the capabil-
ity to acquire this kind of audit information.

There is an inherent duality in network sniffers,
which is also apparent in the firewall world with its
differences between application-level gateways and

w xfiltering routers 1 . If the analysis is carried out at a
low level by performing pattern matching, signature
analysis, or some other kind of analysis of the raw
content of the TCP or IP packet, then the intrusion-
detection system can perform its analysis quickly,
but does not take into account session information,
which could span several network packets. If the
intrusion-detection system acts as an application
gateway and analyzes each packet with respect to the
application or protocol being followed, then the anal-
ysis is more thorough, but also much more costly.
Moreover, this analysis of the higher levels of the
protocol is also dependent on the particular machine
being protected, as implementations of the protocols
are not identical from one network stack to another.

This approach addresses several problems:
Ø Detection of network-specific attacks. There are a

number of network attacks, particularly denial-

()H. Debar et al.rComputer Networks 31 1999 805–822816

of-service, that cannot be detected in a timely
fashion by searching for audit information on the
host, but only by analyzing network traffic.

Ø Impact of auditing on the host performance. In-
formation is collected entirely on a separate ma-
chine, with no knowledge of the rest of the
network. Therefore, installation of such tools is
facilitated because, both in terms of configuration
and performance, they do not impact the entire
environment.

Ø Heterogeneous audit trail formats. The current de
facto standardization towards TCPrIP facilitates
the acquisition, formatting, and cross-platform
analysis of the audit information.

Ø Certain tools analyze the payload of the packet,
which allows the detection of attacks against hosts
by signature analysis. However, an efficient anal-
ysis requires knowledge of the type of machine or
application for which the packet is intended.
But it also has a number of drawbacks:

Ø It is more difficult to identify the culprit when an
intrusion is discovered. There is no reliable link
between information contained in the packets and
the identity of the user who actually submitted the
commands on the host.

ŽØ With switched networks switched Ethernet,
.switched Token Ring, ATM , it is not obvious

where the sniffer should best be placed. Some
tools are located on switches, other at gateways
between the protected system and the outside
world. The former yields better audit information
but is also more costly. One has to realize, how-
ever, that switched networks are also much less

w xvulnerable to sniffer attacks 5,50 and are actu-
ally recommended to improve the security of a
network.

Ø Encryption makes it impossible to analyze the
payload of the packets, and therefore to hide a
considerable amount of important information on
these tools. Also, it is possible, even without
encryption, to obfuscate the contents of the packet
to evade detection if the signatures are not suffi-
ciently comprehensive.

Ø Systematic scanning, for example at the firewall,
is difficult because it might create bottlenecks.
This will only worsen as the bandwidth to access

Žthe Internet is increased at sensitive sites e.g.
.banks, electronic commerce web sites .

Ø Finally, these tools are inherently vulnerable to
denial-of-service attacks if they rely on a com-
mercial operating system to acquire network in-
formation. As the network stacks of these com-
mercial operating systems are vulnerable to at-
tacks, so is the intrusion-detection system.
Network packets are now the source of informa-

tion used by several recent commercial products
w x6,28,66 , and several projects in the research com-

w xmunity have taken this track as well 46,51,52,61 . A
recent evaluation of these products by Ptacek and

w xNewsham 50 shows that the sniffer approach, or at
least the current implementations, has flaws that
make it possible for a skilled attacker to evade

w xdetection. In particular, Ptacek and Newsham 50
show that IP fragmentation is not handled well, and
that the use of wildcards and control sequences in
protocols such as http makes it possible to evade
detection by signatures.

Research is also being conducted in this area.
After IDES and NIDES, SRI is now developing a

w xprototype called Emerald 48 to deal with analysis
of network traffic. Other network sniffers such as

w x w xBro 46 or Network Flight Recorder 51 have been
developed as network data acquisition tools and
therefore do not support intrusion detection per se.

3.4. Continuous monitoring Õersus periodic analysis

Continuous versus periodic intrusion detection ap-
plies to the way the tool performs its analysis. A
dynamic intrusion-detection tool performs a continu-
ous, real-time analysis by acquiring information about
the actions taken on the environment immediately
after they happen. A static intrusion-detection tool
periodically takes a snapshot of the environment and
analyzes this snapshot, looking for vulnerable soft-
ware, configuration errors, and so on.

These static tools assess the security level of the
current configuration of the environment. Examples

w x w xof these tools include COPS 14,16 and Tiger 53
w xfor host environments, and Satan 15 and Ballista

w x Ž w x55 now called CyberCop Scanner 44 since the
buyout of Secure Networks by Network Associates

.Inc. for networks. In the same category are virus
detectors, which scan the disks looking for patterns

()H. Debar et al.rComputer Networks 31 1999 805–822 817

identifying known viruses. These checks include ver-
ifying the version of the applications installed to
ensure that the latest security patches have been
applied, checking for weak passwords, verifying the
contents of special files in users’ home directories, or
verifying the configuration of open network services.
This analysis provides an instant snapshot of the
state of the system, but is only valid at that precise
moment.

These tools are well known and widely used by
system administrators, but they are not sufficient to
ensure high security. First of all, security patches are
not necessarily available on legacy systems, which
cannot be upgraded without losing their operational
requirements. Then, running these security assess-
ment tools is often a lengthy process, particularly in
a networked environment where every system has to
be checked individually. Therefore, the security ex-
posure between two consecutive runs might be sig-
nificant, approximately a day or so, for it has been
shown that active exploitation of vulnerabilities over
the Internet can take less than one day.

Such tools, as well as others specifically devel-
Ž w xoped for that purpose e.g. Tripwire 34 or ATP

w x.65 can be used to detect the traces of an intrusion.
Such traces can be the replacement of a given appli-
cation by an older, vulnerable one, which would be
signaled by COPS or Tiger to the system administra-

w xtor as a potential intrusion. Tripwire 34 extends this
principle by computing the signature of a large set of
system files and comparing it with a database of
reference signatures kept in a safe place, therefore
rendering the change-detection process systematic.
An alarm by a Tripwire-like system signals an intru-
sion in a behavior-based way, i.e. that some file in
the system is not what it used to be. However, these
checks are periodic, and in this sense they do not
fulfill the timeliness and performance requirements
of intrusion-detection systems. Therefore, we do not
consider them in the scope of this paper as being
full-fledged intrusion-detection systems, as defined
in Section 2.2.

Dynamic intrusion-detection tools monitor the ac-
tions that take place on the system. Monitoring takes
place either in real time or in batch, reviewing audit
files or network packets accumulated over a given
period of time. Dynamic monitoring implies real-time
analysis and allows a constant assessment of the

security of the system. It is, however, a costly pro-
cess, both for transporting the audits and for process-
ing them.

4. Intrusion-detection tools

Table 1 presents a selection of intrusion-detection
tools that we have encountered and shows a taxon-
omy of their components. The selection merely illus-
trates the notions described in this paper, and implies
no judgment of the quality of the tool, product, or
method on our part. Also, the number of tools and
prototypes being developed throughout the world is
such that an exhaustive list is difficult to compile,
and we shall continue to add entries to this table.

Table 1 contains more host-based intrusion-detec-
tion systems than network-based intrusion-detection
systems. However, this is not the trend in intrusion
detection, which is towards network information and
protection of the infrastructure. There are more net-

w xwork-based intrusion-detection products 28,66
commercially available today than host-based ones
w x23,45 , as well as recent projects still under develop-
ment. The main reasons for this are probably the

Žease of installing a network-based tool no user
.workstation manipulation required , the performance

degradation experienced by systems when an audit is
started, and the difficulty and cost of managing a
large-scale host audit infrastructure.

Table 1 also shows that, even though many tech-
niques have been explored for intrusion detection,
most commercial products available today imple-
ment one and only one technique, and that the

w xmajority of the recent ones 23,28,66 use signatures,
for two reasons:
Ø The knowledge-based approach is easier to imple-

ment than the behavior-based one. In fact, the
cost in terms of false alarms of the behavior-based
techniques has hitherto made them inappropriate
for commercial intrusion detection.

Ø Speed is essential in processing the audits and
preempts the expressiveness of the technique.
Therefore, signatures are used instead of rules.
In addition, the collaborative approach of correlat-

ing several analyzers to improve the intrusion-detec-

()H. Debar et al.rComputer Networks 31 1999 805–822818

Table 1
Panorama of intrusion-detection systems

IDS origin IDS Name Time Ref Knowledge-based IDS Behavior-based IDS HB NB

Frame ES SA PN STA Stat ES NN UII

w xUniv. Namur ASAX 1990–1997 21 X X
w xAT&T ComputerWatch 1987–1990 12 X X
w xUSAF Haystack 1987–1990 56 X X
w xDIDS 1989–1995 57 X X X X
w xCS Telecom Hyperview 1990–1995 7 X X X X´ ´
w xSRI IDES 1983–1992 11 X X X
w xNIDES 1992–1995 30 X X X
w xEmerald 1996– 48 X X X
w xPurdue Univ. IDIOT 1992–1997 35 X X
w xUC Davis NSM 1989–1995 24 X X X
w xGrIDS 1995– 61 X X
w xLANL W&S 1987–1990 64 X X
w xNadir 1990– 29 X X X
w xCiscor NetRanger 1995– 6,66 X X

WheelGroup
w xISS RealSecure 1995– 28 X X
w xSecurenet SecureNet 1992–1996 59 X X X X X

Consortium
w xNetwork Stalker 1995– 23 X X

Associates Inc
w xWebStalker 1997– 23,45 X X

CyberCop Server
w xUCSB STAT 1991–1992 47 X X
w xUSTAT 1992–1993 27 X X
w xStanford Univ. Swatch 1992–1993 22 X X
w xMCNC and JiNao 1995– 33 X X X

NCSU

Abbreviations used: ES: expert system; SA: signature analysis; PN: Petri net; STA: state transition analysis; Stat: statistics;
NN: neural network; UII: user intent; HB: host-based, and NB: network-based.

w xtion system has been studied 11,59 and is retained
as part of the ongoing work in CIDF, but has not yet
been incorporated in the commercial world.

5. The reusability issue

One of the greatest challenges faced by intrusion-
detection products and prototypes is the capability to
reuse existing components in an environment differ-
ent from the original one. This is due mainly to
incompatible audit and alarm formats.

A working group has been created under the
auspices of the Defence Advanced Research Projects

Ž .Agency DARPA to develop a common intrusion-
Ž . w xdetection framework CIDF 62 . This work aims

primarily at coordinating the many projects funded

by DARPA that are concerned with intrusion detec-
tion, and ensuring that the tools developed are able
to interoperate. The CIDF description of an intru-

Ž .sion-detection system Fig. 4 is more detailed than
the one above and defines all the possible roles of
components that can comprise an intrusion-detection
system. The interfaces of each of these component
roles are then defined, so that any CIDF-compliant

Fig. 4. CIDF description of an intrusion-detection system.

()H. Debar et al.rComputer Networks 31 1999 805–822 819

box can be integrated into a larger tool. The CIDF
group is currently in the process of joining the
Internet Engineering Task Force to make their work
a standard in the Internet world.

Fig. 4 does not include the system being moni-
tored. Obviously, the boxes run on hardware of some
kind, most likely the system that produces the events
in the case of the event box, or on either the moni-
tored system or a specific hardware in the case of the
other boxes.

CIDF defines four kinds of components for an
intrusion-detection system and very specific roles for
each of them. All these components deal with gidos
Ž .generalized intrusion-detection objects , which are

Žrepresented via a standard common format s-expres-
.sions . Gido streams are represented as dashed ar-

rows in Fig. 4. Gidos carry information that is
moved around in the intrusion-detection system.
From a semantics point of view, gidos currently
represent either audit events that occurred in the

Žsystem or an analysis of those audit events hence-
.forth referred to as alarms .

()Ø EÕent boxes E-boxes generate audit events that
are processed by the intrusion-detection system.
E-boxes typically run on the system that gener-
ates the audit events, where they collect the audit
events and make them available to other compo-
nents of the intrusion-detection system. E-boxes
produce audit events but do not consume them.
Their task is to sample the particular environment
for which they are specialized, and to turn occur-
rences in that environment into CIDF gidos for
use by other components. Fig. 4 shows two
event-generator boxes delivering audit events to
two analyzers.

() ŽØ Analysis boxes A-boxes process similar to the
.detector component events from the E-boxes to

create alarms. Analyzers take in gidos and ana-
Žlyze their significance policy violations, anoma-

.lies, intrusions . Their conclusions are turned out
as alarms. In Fig. 4, two of the three A-boxes
receive audits from E-boxes, whereas the third
one aggregates information and passes it to the
countermeasures.

()Ø Database boxes D-boxes store events for later
retrieval. D-boxes are gidos archivers. They re-
ceive events sent by E-boxes or A-boxes, store
them for long-term keeping, and provide a re-

trieval and query service. For example, a D-box
would store the audit and alarm streams described
in Section 2. Configuration and database are pri-
vate to each A-box and must be maintained inde-
pendently. In Fig. 4, the D-box provides gidos to
one of the analyzers and to the countermeasures.

() ŽØ Response boxes R-boxes sometimes also called
.countermeasure boxes apply countermeasures to

the system according to the alarms generated.
They are the active arm of the intrusion-detection
system; they enforce the decisions made in re-
sponse to attacks. In Fig. 4, an R-box takes its
input from the third A-box.
CIDF is work-in-progress. The most important

contribution of CIDF is to define interfaces by which
the different kinds of boxes can communicate, thus
introducing the reusability of components in intru-
sion detection. It is a fact that as of today, a large
number of research prototypes and products have
been developed, but these heterogeneous develop-
ments do not allow the reusability of techniques or
tools in different environments.

Currently, the CIDF effort is giving birth to an
IETF working group chartered to create standards in
the intrusion-detection area. The current draft charter
being discussed states that ‘‘the purpose of the Intru-
sion Detection Working Group is to define data
formats and exchange procedures for sharing infor-
mation of interest to intrusion-detection systems and
their management infrastructure.’’ The output of the
working group should include a requirements docu-
ment, a common language specification, and a
framework document. As the charter is still undergo-
ing discussion, interested readers are referred to the

Ž .CIDF mailing list cidf@seclab.cs.ucdavis.edu for
up-to-date information.

6. Conclusion and future directions

Intrusion detection is currently attracting consid-
erable interest from both the research community
and commercial companies. Research prototypes
continue to be created, and commercial products
based on early research are now available. In this
paper, we have given an overview of the current
state-of-the-art of intrusion detection, based on a
proposed taxonomy illustrated with examples of past

()H. Debar et al.rComputer Networks 31 1999 805–822820

and current projects. This taxonomy highlights the
properties of intrusion-detection systems and covers
the past and current developments adequately.

Information sources for these tools are currently
either a C2 audit trail, syslog, or network packets.
Whereas system sources were widely used in the
early stages of research, the current focus of research
prototypes as well as products is to protect the
infrastructure, rather than the end-user station, and
this paradigm has introduced the usage of network
sniffers that analyze packets. As shown, there are
still quite a number of research issues concerning the
efficiency of network and host audit sources, the
formatting and existence of a common audit trail
format, and even the contents of the audit trail itself.

There are also a number of open research issues
concerning the analysis of the audit trail. Signature
analysis is clearly in the commercial domain now,
but it has been shown to be insufficient to detect all
attacks. Therefore, work is still in progress to experi-
ment with new approaches to both knowledge-based
and behavior-based intrusion detection. The detec-

Žtion of abuse-of-privilege attacks primarily insider
.attacks is also the subject of ongoing work.

References

w x1 S.M. Bellovin, W.R. Cheswick, Network firewalls, IEEE
Ž . Ž .Communications Magazine 32 9 1994 50–57.

w x2 J. Cannady, J. Harrell, A comparative analysis of current
intrusion detection technologies, Proc. 4th Technology for

Ž .Information Security Conf. TISC’96 , Houston, TX, May
1996.

w x3 CERT Coordination Center, Denial-of-service attack via ping,
available by anonymous ftp from ftp.cert.org, December
1986.

w x4 CERT Coordination Center, Syslog vulnerability – a
workaround for sendmail, available by anonymous ftp from
ftp.cert.org, October 1995.

w x5 W.R. Cheswick, S.M. Bellovin, Firewalls and Internet Secu-
rity – Repelling the Wily Hacker, Professional Computing
Series, Addison-Wesley, Reading, MA, 1994.

w x6 Cisco Systems Inc, NetRanger – enterprise-scale, real-time,
network intrusion detection system, available from the com-
pany’s website at http:rrwww.cisco.comrwarprpublicr
751rnetrangerrnetra_ds.htm, 1998.

w x7 H. Debar, M. Becker, D. Siboni, A neural network compo-
nent for an intrusion detection system, Proc. 1992 IEEE

Computer Society Symp. on Research in Security and Pri-
vacy Oakland, CA, May 1992, pp. 240–250.

w x8 H. Debar, M. Dacier, A. Wespi, Fixed versus variable-length
patterns for detecting suspicious process behavior, Technical
Report RZ 3012, IBM Zurich Research Laboratory,
Saumerstrasse 4, CH-8803 Ruschlikon, Switzerland, April¨ ¨
1998, submitted to Esorics’98.

w x9 H. Debar, M. Dacier, A. Wespi, Reference audit information
generation for intrusion detection systems, in: R. Posch, G.

Ž .Papp Eds. , Proc. 14th International Information Security
Conference IFIP SEC’98, Chapman and Hall, Vienna, Aus-
tria and Budapest, Hungaria, August 31–September 4, 1998.

w x10 D. Denning, An intrusion-detection model, IEEE Transac-
Ž . Ž .tions on Software Engineering 13 2 1987 222–232.

w x11 D.E. Denning, P.G. Neumann, Requirements and model for
IDES – a real-time intrusion detection expert system, Tech-
nical report, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, 1985.

w x12 C. Dowell, P. Ramstedt, The ComputerWatch data reduction
tool, Proc. 13th National Computer Security Conf., Washing-
ton, DC, October 1990, pp. 99–108.

w x13 M. Esmaili, R. Safavi-Naini, J. Pieprzyk, Computer intrusion
detection: a comparative survey, Technical Report 95-07,
Center for Computer Security Research, University of Wol-
longong, Wollongong, NSW 2522, Australia, May 1995.

w x14 D. Farmer, Cops overview, available from http:rrwww.
trouble.orgrcopsroverview.html, May 1993.

w x15 D. Farmer, W. Venema, Improving the security of your site
by breaking into it, available at http:rrwww.trouble.orgr
securityradmin-guide-to-cracking.html, 1993, Internet white
paper.

w x16 D. Farmer, E. Spafford, The cops security checker system,
Proc. Summer USENIX Conf., Anaheim, CA, June 1990, pp.
165–170.

w x17 S. Forrest, S.A. Hofmeyr, A. Somayaji, Computer immunol-
Ž . Ž .ogy, Communications of the ACM 40 10 October 1997

88–96.
w x18 J. Frank, Artificial intelligence and intrusion detection: cur-

rent and future directions, Proc. 17th Nat. Computer Security
Conf. , Baltimore, MD, October 1994.

w x19 P. Gallinari, S. Thiria, F. Fogelman-Soulie, Multilayer per-
ceptrons and data analysis, Proc. IEEE Annual Int. Conf. on

Ž .Neural Networks ICNN88 , Vol. I, San Diego, CA, July
1988, pp. 391–399.

w x20 T. Garvey, T. Lunt, Model-based intrusion detection, Proc.
14th National Computer Security Conf., October 1991, pp.
372–385.

w x21 N. Habra, B. Le Charlier, A. Mounji, I. Mathieu, Asax:
software architecture and rule-based language for universal
audit trail analysis, in: Y. Deswarte, G. Eizenberg, J.-J.

Ž .Quisquater Eds. , Proc. 2nd European Symp. on Research in
Ž .Computer Security ESORICS , Toulouse, Berlin, Lecture

Notes in Computer Science, vol. 648, Springer, Berlin,
November 1992.

w x22 S.E. Hansen, E.T. Atkins, Automated system monitoring and
notification with swatch, Proc. 7th Systems Administration

Ž .Conf. LISA’93 , Monterey, CA, November 1993.

()H. Debar et al.rComputer Networks 31 1999 805–822 821

w x23 Haystack Labs, Inc.Stalker, available from the company’s
website at http:rrwww.haystack.comrstalk.htm, 1997.

w x24 L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J.
Wood, D. Wolber, A network security monitor, Proc. Symp.
on Research in Security and Privacy, IEEE Computer Society
Press, Los Alamitos, CA, Oakland, CA, May 1990, pp.
296–304.

w x25 P. Helman, G. Liepins, Statistical foundations of audit trail
analysis for the detection of computer misuse, IEEE Transac-

Ž . Ž .tions on Software Engineering 19 9 September 1993
886–901.

w x26 P. Helman, G. Liepins, W. Richards, Foundations of intru-
sion detection, Proc. 5th Computer Security Foundations
Workshop Franconic, NH, June 1992, pp. 114–120.

w x27 K. Ilgun, Ustat: a real-time intrusion detection system for
Unix, Proc. IEEE Symp. on Research in Security and Privacy
Oakland, CA, May 1993, pp. 16–28.

w x28 Internet Security Systems, Inc.RealSecure, Internet
http:rrwww.iss.netrprodrrsds.html, 1997.

w x29 K. Jackson, D. DuBois, C. Stallings, An expert system
application for network intrusion detection, Proc. 14th Na-
tional Computer Security Conf., November 1991, pp. 215–
225.

w x30 R. Jagannathan, T. Lunt, D. Anderson, C. Dodd, F. Gilham,
C. Jalali, H. Javitz, P. Neumann, A. Tamaru, A. Valdes,
System design document: Next-generation intrusion detection

Ž .expert system NIDES , Technical Report A007rA008r
A009r A011r A012r A014, SRI International, 333
Ravenswood Avenue, Menlo Park, CA 94025, March 1993.

w x31 H. Javitz, A. Valdes, The SRI IDES statistical anomaly
detector, Proc. IEEE Symp. on Research in Security and
Privacy, May 1991, pp. 316–326.

w x32 H.S. Javitz, A. Valdez, T.F. Lunt, A. Tamaru, M. Tyson, J.
Lowrance, Next generation intrusion detection expert system
Ž .NIDES . 1. Statistical algorithms rationale. 2. Rationale for
proposed resolver, Technical Report A016 Rationales, SRI
International, 333 Ravenswood Avenue, Menlo Park, CA,
March 1993.

w x33 Y.F. Jou, F. Gong, C. Sargor, S.F. Wu, W.R. Cleaveland,
Architecture design of a scalable intrusion detection system
for the emerging network infrastructure, Technical Report
CDRL A005, MCNC Information Technologies Division,
Research Triangle Park, NC 27709, April 1997.

w x34 G.H. Kim, E.H. Spafford, The design and implementation of
Ž .tripwire: A file system integrity checker, in: J. Stern Ed. ,

2nd ACM Conf. on Computer and Communications Security,
ACM Press, COAST, Purdue, November 1994, pp. 18–29.

w x35 S. Kumar, E. Spafford, A pattern matching model for misuse
intrusion detection, Proc. 17th National Computer Security
Conf. October 1994, pp. 11–21.

w x36 C.E. Landwehr, A.R. Bull, J.P. McDermott, W.S. Choi, A
taxonomy of computer program security flaws, ACM Com-

Ž . Ž .puting Surveys 26 3 September 1994 211–254.
w x37 G. Liepins, H.S. Vaccaro, Anomaly detection: purpose and

framework, Proc. 12th National Computer Security Conf.,
October 1989, pp. 495–504.

w x38 T. Lunt, R. Jagannathan, A prototype real-time intrusion-de-

tection expert system, Proc. Symp. on Security and Privacy,
Oakland, CA, April 1988, pp. 59–66.

w x39 T.F. Lunt, Automated audit trail analysis and intrusion detec-
tion: a survey, Proc. 11th National Computer Security Conf.,
Baltimore, MD, October 1988.

w x40 T.F. Lunt, A survey of intrusion detection techniques, Com-
Ž . Ž .puters & Security 12 4 June 1993 405–418.

w x41 T.F. Lunt, R. Jagannathan, R. Lee, S. Listgarten, D.L. Ed-
wards, P.G. Neumann, H.S. Javitz, A. Valdes, IDES: The
enhanced prototype – a real-time intrusion-detection expert
system, Technical Report SRI-CSL-88-12, SRI International,
333 Ravenswood Avenue, Menlo Park, CA, October 1988.

w x42 N. McAuliffe, D. Wolcott, L. Schaefer, N. Kelem, B. Hub-
bard, T. Haley, Is your computer being misused? a survey of
current intrusion detection system technology, Proc. 6th An-
nual Computer Security Applications Conf., Tucson, AZ,
IEEE Computer Society Press, Los Alamitos, CA, December
1990, pp. 260–272.

w x43 A. Mounji, languages and tools for rule-based distributed
intrusion detection, Doctor of science, Facultes Universitaires´
Notre Dame de la Paix, Namur, Belgium, September 1997.

w x44 Network Associates Inc., Cybercop scanner, available from
the company’s website at http:rrwww.nai.comrproductsr
securityrballistardefault.asp, 1998.

w x45 Network Associates Inc., Cybercop server, available from the
company’s website at http:rrwww.nai.comrproductsr
securityrcybercopsvrrindex.asp, 1998.

w x46 V. Paxson, Bro: a system for detecting network intruders in
real-time, Proc. 7th USENIX Security Symp., San Antonio,
TX, January 1998.

w x47 P. Porras, R. Kemmerer, Penetration state transition analysis
– a rule-based intrusion detection approach, Proc. 8th Annual
Computer Security Applications Conf., November 1992, pp.
220–229.

w x48 P.A. Porras, A. Valdes, Live traffic analysis of tcprip gate-
ways, Proc. ISOC Symp. on Network and Distributed System

Ž . ŽSecurity NDSS’98 , San Diego, CA, March 1998 Internet
.Society .

w x49 K.E. Price, Host-based misuse detection and conventional
operating systems’ audit data collection, Master of science,
Purdue University, Purdue, IN, December 1997.

w x50 T.H. Ptacek, T.N. Newsham, Insertion, evasion, and denial
of service: eluding network intrusion detection, Technical
Report, Secure Networks, Inc., Suite 330, 1201 5th Street S.
W, Calgary, Alberta, Canada, T2R-0Y6, January 1998.

w x51 M.J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz,
A. Lambeth, E. Wall, Implementing a generalized tool for
network monitoring, Proc. 11th Systems Administration Conf.
Ž .LISA’97 , San Diego, CA, October 1997.

w x52 P. Rolin, L. Toutain, S. Gombault, Network security probe,
CCS’94, Proc. 2nd ACM Conf. on Computer and Communi-
cation Security, November 1994, pp. 229–240.

w x53 D.R. Safford, D.L. Schales, D.K. Hess, The tamu security
package: an ongoing response to internet intruders in an
academic environment, Proc. 4th USENIX Security Symp,
Santa Clara, CA, October 1993, pp. 91–118.

w x54 W.S. Sarle, Neural networks and statistical models, Proc.

()H. Debar et al.rComputer Networks 31 1999 805–822822

19th Annual SAS Users Group Int. Conf., Cary, NC, April
1994, pp. 1538–1550.

w x55 Secure Networks, Inc. Ballista security auditing system,
available from the company’s website at http:rrwww.
securenetworks.comrballistarballista.html, 1997.

w x56 S. Smaha, Haystack: an intrusion detection system, 4th
Aerospace Computer Security Applications Conf., October
1988, pp. 37–44.

w x57 S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan, L.T. Heber-
lein, C.l. Ho, K.N. Levitt, B. Mukherjee, S.E. Smaha, T.

ŽGrance, D.M. Teal, D. Mansur, DIDS distributed intrusion
.detection system – motivation, architecture, and an early

prototype, Proc. 14th National Computer Security Conf.,
Washington, DC, October 1991, pp. 167–176.

w x58 M. Sobirey, Intrusion detection system bibliography, Inter-
net: http:rrwww-rnks.informatik.tu-cottbus.der sobireyr
ids.html, March 1998.

w x59 P. Spirakis, S. Katsikas, D. Gritzalis, F. Allegre, J. Darzen-
tas, C. Gigante, D. Karagiannis, P. Kess, H. Putkonen, T.
Spyrou, SECURENET: a network-oriented intelligent intru-
sion prevention and detection system, Network Security Jour-

Ž . Ž .nal 1 1 1994 .
w x60 T. Spyrou, J. Darzentas, Intention modelling: approximating

computer user intentions for detection and prediction of
Ž .intrusions, in: S.K. Katsikas, D. Gritzalis Eds. , Information

Systems Security, Samos, Greece, May 1996, pp. 319–335.
w x61 S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J.

Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, D. Zerkle,
GrIDS – a graph based intrusion detection system for large
networks, Proc. 19th National Information Systems Security
Conf., 1996.

w x62 S. Staniford-Chen, B. Tung, P. Porras, C. Kahn, D. Schnack-
enberg, R. Feiertag, M. Stillman, The Common Intrusion
Detection Framework-data Formats, Internet draft draft-ietf-
cidf-data-formats-00.txt, March 1998.

w x63 U.S. Department of Defense, Trusted computer systems eval-
uation criteria, August 1983.

w x64 H.S. Vaccaro, G.E. Liepins, Detection of anomalous com-
puter session activity, Proc. IEEE Symp. on Research in
Security and Privacy, 1989, pp. 280–289.

w x65 D. Vincenzetti, M. Cotrozzi, Atp – anti tampering program,
Proc. 4th USENIX Security Symp., Santa Clara, CA, Octo-
ber 1993, pp. 79-9.

w x66 WheelGroup Corporation, Brochure of the netranger intru-
sion detection system, available from the company’s website
at http:rr www.wheelgroup.comr netrangrr netranger_
broch.html.

Herve Debar is a research scientist in´
the global security analysis laboratory at
the IBM Zurich Research Laboratory,
where he works on system and network

Žsecurity in particular intrusion detec-
.tion as well as system management. His

interests include secure systems and arti-
ficial intelligence. Dr. Debar holds a
Ph.D. from the University of Paris and
is a telecommunications engineer from
the Institut National des Telecommuni-´ ´

Ž .cations in Evry France .

Marc Dacier is currently working at the
IBM Zurich Research Laboratory in the
Information Technology Solutions De-
partment. He prepared his Ph.D. at
LAAS-CNRS and then worked at Firstel
as a security consultant. His research
interests focus on penetration testing of
computing systems and on security poli-
cies.

Andreas Wespi holds a M.Sc. in Com-
puter Science from the University of
Berne, Switzerland. He is currently
working at the IBM Zurich Research
Laboratory in the Information Technol-
ogy Solutions Department. His research
interests include network security as well
as distributed and parallel computing.

