Modes of Operation
Encrypting a Large Message

• How do you encrypt a message larger than 64 bits?

• Modes of Block Cipher Operations:
 – Electronic Code Book (ECB)
 – Cipher Block Chaining (CBC)
 – K-Bit Cipher Feedback Mode (CFB)
 – K-Bit Output Feedback Mode (OFB)
 – Counter Mode (CTR)
Electronic Code Book (ECB)

Also see Fig. 4-1
ECB Problem #1

\[(M_1 == M_3) \Rightarrow (C_1 == C_3)\]
ECB Problem #2

• Without additional integrity protection
 – cipher block substitution and rearrangement attacks
 – fabrication of specific information

• Lack the basic protection against integrity attacks on the ciphertext at message level
Cipher Block Chaining (CBC)

(M₁ == M₃) very unlikely leads to (C₁ == C₃)

Also see Fig. 4-5
CBC Decryption

Also see Fig. 4-6
CBC Properties

• Chaining dependency
 – Each ciphertext block depends on all preceding plaintext blocks

• Error propagation
 – Each error c_j affects the decipherment of c_j and c_{j+1}

• Error recovery
 – An error in c_j does not propagate beyond c_{j+1}

• Threat

• Modifying Ciphertext Blocks
 – Changing c_n has a predictable effect on m_{n+1}
 – Most likely, changing c_n will garble m_n to some random 64-bit value
k bit Output Feedback Mode (k-bit OFB)

- It is a **stream cipher**: generate a **one-time pad** and apply it to a stream of plaintext with \oplus
OFB Properties

• Advantage
 – One-time pad can be generated in advance: extremely fast encryption when the message comes
 – If some bits of the ciphertext are garbled, only those bits of plaintext get garbled
 – Arbitrary sized chunk

• Disadvantage
 – If the plaintext and ciphertext are known, the adversary can modify the plaintext into anything. Generate whatever message he wants to transmit
k bit Cipher Feedback Mode (k-bit CFB)

- Also see Fig 4-9 of the textbook
CFB Properties

• Advantage compared with CBC/OFB
 – With 8-bit CFB, if a byte is lost, one byte of plaintext will be lost and the next 8 bytes will be garbled. After that, the plaintext will decrypt properly.
 – If a byte is added to the ciphertext, a byte of garbage will be added, and the following 8 bytes will be garbled, the rest will be ok.

• Disadvantage
 – Random stream can no longer be computed in advance
Counter Mode (CTR)

\[K \rightarrow E \rightarrow \oplus \rightarrow c_1 \]
\[m_1 \rightarrow \oplus \rightarrow c_1 \]

\[K \rightarrow E \rightarrow \oplus \rightarrow c_2 \]
\[m_2 \rightarrow \oplus \rightarrow c_2 \]

\[K \rightarrow E \rightarrow \oplus \rightarrow c_3 \]
\[m_3 \rightarrow \oplus \rightarrow c_3 \]
CTR Properties

• Advantages
 – Like OFB, cryptography can be pre-computed, encryption is simple
 – Like CBC, decrypt the message starting at any point

• Disadvantages
 – Attacker could get the \oplus of two plaintext blocks if different data is encrypted with the same key and IV
Generating MACs

- MAC – Message Authentication Code
 - Also known as cryptographic checksum, Message Integrity Code (MIC)
 - Assumption: sender and receiver share a common secret key
 - Only send last block of CBC (CBC residue) along with the plaintext message
 - The modification of the message will make the CBC residue incorrect – insures integrity
Ensuring Privacy and Integrity Together

Scheme 1??

Scheme 2??
Ensuring Privacy and Integrity Together

Scheme 3
Ensuring Privacy and Integrity Together

- CBC with a Weak Cryptographic Checksum
- Use separate (but related) secret keys for encryption and MAC (two encryption passes)
- CBC(message | hash)
- ...
3DES

• Major limitations of DES
 – Key length is too short (56 bits)
• Multiple encryption to compensate for the short basic DES key
 – Make it more secure
• Standard practice: $E(K_3, D(K_2, E(K_1, P)))$
• $K_1 = K_3$ results in an equivalent 112-bit DES that provides an sufficient key space
• Distinct K_1, K_2, K_3 results even stronger 168-bit DES
• EDE: can run as a single DES with $K_1 = K_2$
Standard Method for EDE

- Two keys: K1 and K2

Many Variations!!
3DES

• How many encryptions?
 – We do not want to do any more encryptions than are necessary

• Encrypting Twice with the Same Key
 – Not to be much more secure than single encryption with K

• Encrypting Twice with Two Keys
 – Meet-in-the-middle-attack

• Triple Encryption with only Two Keys
 – Using K_1 twice is sufficiently secure
 – K_2 used in decrypt mode
Meet-in-the-middle Attack

Encryption

\[P \xrightarrow{E} X \xrightarrow{E} C \]

Decryption

\[P \xleftarrow{D} X \xleftarrow{D} C \]

Observation:

\[X = E_{K_1}(P) = D_{K_2}(C) \]

- For a few \(<plaintext, ciphertext> <p, c>\)
 - Encrypt \(m\) for all \(2^{56}\) values of \(K_1\)
 - Store the results in a table sorted by the value of \(X\)
 - Decrypt \(C\) for all \(2^{56}\) values for \(K_2\)
 - Store the results in a table sorted by the value of \(X\)
 - Search through the sorted lists to find matching entries.
Meet-in-the-middle Attack

• Analysis
 – With one pair \(<p_1, c_1>\), the number of keys that can survive the test is \(2^{48}\)
 – For each pair of keys \((K_1, K_2)\), the probability that it can find a non-empty entry in the table is \(2^{-8}\)
 – With another pair \(<p_2, c_2>\), the number of keys that can survive both test is \(2^{-16}\)
 – The probability that the correct keys is determined is \(2^{-16}\)
CBC Outside vs. Inside

• CBC on the outside
 – No change in the property - It is possible to make a predictable change to plaintext block n

• CBC on the inside
 – Any change to ciphertext block n garbles all plaintext blocks from n to the end of the message – more secure

• Self-synchronization
3DES Is Not Ideal...

- Efficiency demands schemes with longer keys to begin with!
- 3DES runs one third as fast as DES on the same platform
- New candidates are numerous - RC5, IDEA, two-fish, CAST, etc