

Getting Started Guide

Rev. A, September 2005

Document 7430-0022-07

© 2002-2005 Crossbow Technology, Inc. All rights reserved.
Information in this document is subject to change without notice.

Crossbow, MICA, TrueMesh and XMesh are registered trademarks of Crossbow Technology, Inc.
Other product and trade names are trademarks or registered trademarks of their respective holders.

Getting Started Guide

Table of Contents

1 Mesh Networking Right Out-of-the-Box ..4
1.1 Installing the Surge-View Folder onto Your PC.. 5
1.2 Preparing the Motes and Base Station ... 6
1.3 SerialForwarder .. 7
1.4 Running the Surge GUI ... 8
1.5 Analyzing Network Data with Stats .. 11
1.6 Reviewing Network Topology and Yield with HistoryViewer.................................... 11

2 Installation of TinyOS ..13
2.1 What You Need for Installation... 13
2.2 Installing TinyOS 1.1.0, Development Tools, and TinyOS 1.1.10 Updates................ 13
2.3 Verification of TinyOS and TinyOS Tools Installation... 15
2.4 TinyOS Installation Structure.. 17

3 Programming Environment Customization...19
3.1 Setting Aliases ... 19
3.2 Compiling TinyOS Applications ... 19
3.3 Programming Boards ... 20
3.4 Installing TinyOS Applications into a Mote.. 23
3.5 Setting the Group ID and Node Address for the Mote Network 23
3.6 The MakeXbowlocal File ... 24
3.7 Radio Frequencies.. 27

4 Introduction to TinyOS and NesC ..29
4.1 TinyOS Programming philosophy ... 29
4.2 Concurrency Model ... 30
4.3 An Example Application: Blink ... 30
4.4 Compiling the Blink Application ... 31
4.5 Programming a Mote with the Application Blink .. 31
4.6 Generating the Component Structure Documentation ... 32
4.7 Radio Communications.. 33
4.8 Learning More About TinyOS and nesC ... 35

5 Test Applications and Drivers for Sensor and Data Acquisition Boards36
5.1 Drivers ... 36
5.2 Test Applications: The XSensor Series.. 36
5.3 User Interface: XListen .. 38
5.4 Example Output from XSensorMTS400... 41

Doc. # 7430-0022-07 Rev. A Page 1

 Getting Started Guide

5.5 Example Output from XSensorMTS510... 42
5.6 Example Output from XSensorMDA300 ... 42
5.7 Example Output from XSensorMDA500 .. 42

6 Surge Multi-hop Networking Application..44
6.1 How does Surge Multi-hop network work?... 44
6.2 Programming Motes with Surge_Reliable... 45
6.3 Running Surge-View GUI ... 47

7 Appendix A. Warranty and Support Information ..48
7.1 Customer Service... 48
7.2 Contact Directory... 48
7.3 Return Procedure ... 48
7.4 Warranty .. 49

Page 2 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

About This Document

The following annotations have been used to provide additional information.

 NOTE
Note provides additional information about the topic.

 EXAMPLE
Examples are given throughout the manual to help the reader understand the terminology.

 IMPORTANT
This symbol defines items that have significant meaning to the user

 WARNING
The user should pay particular attention to this symbol. It means there is a chance that physical
harm could happen to either the person or the equipment.

The following paragraph heading formatting is used in this manual:

1 Heading 1

1.1 Heading 2

1.1.1 Heading 3

This document also uses different body text fonts (listed in Table 0-1) to help you distinguish
between names of files, commands to be typed, and output coming from the computer.

Table 0-1. Font types used in this document.

Font Type Usage
Courier New Normal Sample code and screen output
Courier New Bold Commands to be typed by the user

Times New Roman Italic TinyOS files names, directory names
Franklin Medium Condensed Text labels in GUIs

Doc. # 7430-0022-07 Rev. A Page 3

 Getting Started Guide

1 Mesh Networking Right Out-of-the-Box

Wireless sensor networks have attracted a wide interest from academia and industry alike due to
their diversity of applications. Sensor networks are pervasive by nature; the number of nodes in a
network is nearly boundless. Therefore, a key to realizing this potential is multi-hop mesh
networking, which enables scalability and reliability. A mesh network is really a generic name
for a class of networked embedded systems that share several characteristics including,

 Multihop Routing―the capability of sending messages peer-to-peer to a base station,
thereby enabling scalable range extension;

 Self-Configuring―capable of network formation without human intervention;

 Self-Healing―capable of adding and removing network nodes automatically without having
to reset the network; and

 Dynamic Routing―capable of adaptively determining the route based on dynamic network
conditions (e.g., link quality, hop-count, gradient, or other metric).

When combined with battery power management, these characteristics allow sensor networks to
be long-lived, easily deployed, and resilient to the unpredictable wireless channel. With mesh
networking, the vision of pervasive and fine-grained sensing becomes reality.

Crossbow has developed multi-hop, mesh networking firmware that implements the above
characteristics. To help customers try mesh networking, the MICAz, MICA2 and MICA2DOT
Motes that come in Crossbow’s Basic and Professional MOTE-KITs come preinstalled with a
mesh networking application called Surge_Reliable. The mesh networking algorithm is based on
work by Alec Woo and others at the University of California at Berkeley. The algorithms were
extended and improved via a commercial software development and testing process.

We also have a set of PC software tools called Surge-View. Included is an enhanced Surge
graphical user-interface to view the Motes’ connectivity, routing statistics, and sensor board data.
Furthermore, users can store network performance data into their PCs for post-processing. A
second program called Stats gives an overall summary of the network health. Another program
called HistoryViewer allows for manual playback of the network’s topology and statistics.

 IMPORTANT

This Chapter is geared for the MOTE-KIT users only. Crossbow’s Basic and Professional
MOTE-KITs come pre-installed with a mesh networking application called Surge_Reliable. If
you did not purchase a complete Kit, instead purchased individual boards, please proceed to
Chapter 2. The Mote firmware and PC software are on the TinyOS Support Tools CDROM that
comes with wireless the products.

Page 4 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

1: Copying Surge-View to a PC

 Insert CDROM into your PC’s CDROM drive.
 Copy the folder Surge-View and paste into your

C:\Program Files directory.

4: Starting the SerialForwarder GUI

 Using Windows Explorer, navigate to the Surge-
View folder under Program Files.

 Double-click on Serialforwarder.exe
 When the SerialForwarder window appears, click

on “Stop Server.”
 Set the COM port number and serial port speed to

57600 in the box under “Mote Communications.”
An example line is serial@COM1:57600

 Click on “Start Server.”

2: Getting the Motes Ready

 Install batteries into your Motes, except for the one
labeled with “Base” and/or “0”.

 Turn on the MICA2 or MICAz Motes using the switch
that’s on the Mote’s PCB. (The MICA2DOTs
automatically turn on when the battery is attached.)

 Verify antennas are attached to MICA2 motes.

5: Starting the Surge GUI

 Open a Command Prompt window.
 Change the directory to Program Files\Surge-View

with cd ..\..\Program Files\Surge-
View

 Type in Surge 125. (The “125” is the default
group ID.)

 This should invoke the Surge-View GUI.

3: Connecting the MIB510 to a PC

 Connect MIB510 to the serial port of your PC with

an RS-232 straight-through serial cable.
 Attach the MICA2 or MICAz mote labeled as

“Base_###_0” or “Surge_0” to the MIB510.

6: Viewing the Results

 The Network Topology and Statistics windows

should appear.
 Wait one to two minutes for the remote nodes to

appear.

Figure 1-1. Flow chart on how to get the Surge-View mesh networking demo running. The
“###” in “Base_###_0” will either be 315, 433, 900 or 2400. The “COM#” is the serial port

number to which the MIB510 is connected. (Using MIB510 Serial interface board, Serial Cable
and PC)

1.1 Installing the Surge-View Folder onto Your PC

1. Insert the TinyOS Support Tools CDROM into your PC.

2. Copy the Surge-View folder into your C:\Program Files\ directory.

Some of the commands in the Surge-View folder are run by typing in a Command Prompt
window. You may want to put a shortcut to it (left click on start > Programs > Accessories, then right
click on Command Prompt, choose “Create Shortcut”) in a convenient location like the desktop
or in the Windows® Start Menu.

Doc. # 7430-0022-07 Rev. A Page 5

 Getting Started Guide

1.2 Preparing the Motes and Base Station

The Motes in your basic or professional MOTE-KIT come pre-programmed with the mesh
networking firmware: Surge_Reliable for the MICAz, MICA2 and Surge_Reliable_Dot for
MICA2DOT. The set of hardware that is used for this application is shown in Figure 1-2 below.

(A)

B) MTS310 and

MTS300

C) MTS510

Figure 1-2. Pictures of the basic hardware used in the mesh networking application. A) In front:
MIB510 topside. In back: a MICA2/MICAz and a MICA2DOT both without antennas. Antennas
must be attached to have good radio transmission and reception. B and C) Sensor boards for

the MICA2 and MICA2DOT, respectively. The term “sensor node” will be used in this document
to mean a MICA2|DOT Mote + sensor board.

1. Install the appropriate batteries: AA batteries or 3V coin cell in the MICAz/MICA2 and
MICA2DOT Motes, respectively. Attach the antennas to the MICAz/MICA2 Motes if not
already connected. Switch the MICAz/MICA2 battery switch to the “ON” position. The
MICA2DOTs don’t have an “ON/OFF” switch and are automatically powered when the
battery is installed.

2. Setting up the base station: Attach the MICAz/MICA2 Mote labeled “Base_###_0” or
“Surge_0” to the MIB510, where ### refers to the frequency band of your Mote (i.e., 315,
433, 900 or 2400). Supply power to the MIB510 with the AC wall power adaptor. Connect
the MIB510 to your PC’s serial port (or USB to serial or PCMCIA serial adaptor) with a
straight-through RS-232 cable.

 NOTE: The Professional MOTE-KITs come with two MDA500 data acquisition boards. These
are circular PCBs populated only with 19 pins. These can be used to make it easier to attach a
MICA2DOT to the MIB510. This is done by connecting the 19-pin female-side of the MDA500 to
the 19 male pins on the MIB510. The flexibility of the board and pins of the MDA500 helps to
make up for small misalignments between the boards and avoids bending of pins on MIB510.

3. Setting up the sensor nodes: Attach the MTS300 (found in the Basic kit) or MTS310 (found
in the Professional kit) to your MICAz/MICA2 Motes. (Professional kit only: If necessary,

Page 6 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

attach the MTS510 sensor board to each MICA2DOT.) While the Motes for this demo are
pre-labeled with numbers, it does not matter which sensor boards you attach to the Mote as
long as it’s compatible, e.g., MTS310/MDA300 to MICAz; MTS300/310 to MICA2;
MTS510 to a MICA2DOT.

1.3 SerialForwarder

The SerialForwarder is a program written in Java, and it is used to read packet data from a
computer’s serial port and forward it over a server port connection, so that other programs can
communicate with the sensor network via a sensor network gateway. SerialForwarder does not
display the packet data itself, but rather updates the packet counters in the lower-right hand
corner of the window. Once running, the serial forwarder listens for network client connections
on a given TCP port (9001 is the default for MIB510 and 10002 for MIB600), and simply
forwards TinyOS messages from the serial port to the network client connection, and vice versa.
Note that multiple applications can connect to the serial forwarder at once, and all of them will
receive a copy of the messages from the sensor network.

You can startup the SerialForwarder in one of two ways:

 Double-clicking on the file SerialForwarder.exe using Windows Explorer (right click on
“start” on the task bar and navigate to C:\Program Files\Surge-View). OR…

 Typing in a command line in a Command Prompt window (found in
start>Programs>Accessories).

1.3.1 Double-clicking on the file SerialForwarder.exe in the Surge-View folder
If you used Windows® Explorer and double-clicked on SerialForwarder.exe, then a
window with the label SerialForwarder screen should appear.

For MIB510/MIB520 users the Server Port should be set to 9001 (the default).

Click on Stop Server (which then becomes Start Server). Edit the text box under Mote
Communications to

serial@COM<#>:<platform>

where <#> = 1, 2, 3, etc., for serial port COM1, COM2, COM3, etc., if you’re
using the MIB510/MIB520. Or to

 network@<IP_Address_of_MIB600>:10002

where <IP_Address_of_MIB600> is the IP address of the MIB600. The information in
that box is case sensitive so the word "network" must be all lower case.

Click on Start Server (which then becomes Stop Server).

Doc. # 7430-0022-07 Rev. A Page 7

 Getting Started Guide

Figure 1-3. (Left) The Java application SerialForwarder when it first appears. (Right) When you click on

“Start Server,” it prints what serial port, speed, and port. A third line should include the word
“resynchronizing.”

You should see the Pckts Read number increase if your MIB510/MIB600 has an attached
MICAz/MICA2 Mote labeled with “Base_###_0” or “Surge_0” and is plugged into your
PC and that you have the remaining Motes installed with batteries and antennas as needed.
(The “###” will either be 315, 433, 900 or 2400)

1.3.2 Command Prompt directions
1. Start the Command Prompt program by going to the Windows® Taskbar and clicking on

start>Programs>Accessories>Command Prompt.

2. Change the directory to C:\Program Files\Surge-View. If the default directory is
C:\Documents and Settings\[Your User Name]>, use the following command line.

cd ..\..\Program Files\Surge-View

3. Start SerialForwarder along with the -comm port information
SerialForwarder -comm serial@COM<#>:57600

where <#> = 1, 2, 3, etc. for serial port COM1, COM2, COM3, etc.
SerialForwarder –comm network@<IP_Address_of_MIB600>:10002

The -comm argument tells SerialForwarder to communicate over a specific port.

1.4 Running the Surge GUI

To run the Surge graphical user-interface:

1. Start the program Command Prompt (if not running) by going to the Windows® Taskbar and
clicking on start > Programs > Accessories > Command Prompt.

2. Change directory to the Surge-View folder under C:\Program Files\.
cd ..\..\Program Files\Surge-View

3. Type in the command line below:
Surge 125 > log_filename

The “125” is the default group ID for your network. Surge will output on the Command Prompt
window the raw network data. You can write that output to a file. To do this include the “>

Page 8 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

log_filename” text as shown above, where log_filename is a user defined file name for
the output.

When the application starts, you should immediately see the base node reporting sensor values.
Typically after one to two minutes (but could be longer depending on how many nodes you have
in the network), the remote nodes should appear as the network topology builds. A solid green
line indicates an active data transmission link. A blue line represents a partially active
communication link. A red line indicates that the link is no longer active and will soon disappear
from the topology view until the link is re-established.

 NOTE: The location of the node IDs on the screen does not represent the physical location of
the nodes in the neighborhood of the PC.

Figure 1-4. Network topology and Statistics windows. Initially only the base station Mote
as node 0 and host PC as node 126 appear on the Topology window.

Doc. # 7430-0022-07 Rev. A Page 9

 Getting Started Guide

Figure 1-5. After a minute, the other Motes will begin to appear. Depending on the
number of Motes, the entire network may take several minutes to come on line.

 NOTE: For Professional MOTE-KIT users. The MICA2DOTs have a default transmit rate of
once every two seconds. The MICA2s have a transmit rate of once per eight seconds.
Therefore, in the “Statistics” window, the “sent” counter for the MICA2DOTs to be about four
times the amount as the MICA2s. This will allow you to test how transmission rates affect quality
and yield. You can change either the MICA2s or MICA2DOT’s transmit rate.

1.4.1 Changing the Background of the Surge GUI
The background image displayed in the Sensor Network Topology window can be changed
to any jpeg image file. The file called Surge_background.jpg is in the Surge-View\images\
folder. Rename the existing file and then save your own jpeg image file as
Surge_background.jpg.

Page 10 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

1.5 Analyzing Network Data with Stats

If you entered in a log_filename when starting Surge GUI, a colon delimited .txt file is stored
onto your disk. This file can be read by a text editor, word processor, or spreadsheet program.

To run the Surge-View interface Stats.exe:
1. If not active, open a Command Prompt window by clicking on start > Programs > Accessories

> Command Prompt

2. Change directory to the Surge-View folder under C:\Program Files\
cd ..\..\Program Files\Surge-View

3. Run the Stats program by “piping in” (using the symbol for “lesser than,” <) the name you
used for log_filename. Optionally you can also write the Stats output to file (using “>”) and
assigning a filename.

Stats < log_filename > stats_filename

The above command line reads in the file with the network data log and then writes a colon
delimited .txt file which can be read by a text editor, word processor, or spreadsheet program.

 EXAMPLE—Imported Stats Output Turned Into an Excel® File

Node
Number

 Packets
Received Packets Sent Success

Rate
 Parent

Changes
 Level

Changes
Average

Level
 Duty
Cycle

Battery
Voltage

1 1211 1270 0.95 140 79 2.26 1.04 3.16

2 1272 1273 1.00 15 8 1.87 1.14 3.12

3 1266 1276 0.99 2 1 2.00 1.31 3.11

4 1275 1277 1.00 8 5 1.86 1.07 2.99

5 1267 1276 0.99 11 3 1.99 1.19 3.19

7 1267 1276 0.99 2 1 2.00 3.10 3.11

8 1255 1276 0.98 5 7 2.89 1.99 3.08

9 1278 1278 1.00 0 1 1.00 1.49 3.19

1.6 Reviewing Network Topology and Yield with HistoryViewer

Another way to look at the performance of your wireless network is with the program called
HistoryViewer. Your data should be a file or subdirectory in the Surge-View folder.

To run the Surge-View’s interface HistoryViewer.exe:
1. If not active, open a Command Prompt window by clicking on start > Programs > Accessories

> Command Prompt

2. Change directory to the Surge-View folder under C:\Program Files\.
cd ..\..\Program Files\Surge-View

3. Type in the following command line. (The “<” symbol pipes in the data from the data file
log_filename.)

Doc. # 7430-0022-07 Rev. A Page 11

 Getting Started Guide

HistoryViewer < log_filename

Three windows should appear: a “Sensor Network Topology,” a “Sensor Network Data,” and a
“Statistics” window. In the Sensor Network Data window, use your mouse to move the vertical,
red line to examine the statistics and network topology at that date/time.

Figure 1-6. Sensor Network Data and Statistics and Topology (not shown) appear when
HistoryViewer.exe is started.

Page 12 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

2 Installation of TinyOS

This Chapter takes you through the installation of TinyOS 1.1.0, then update to version 1.1.10,
and copying of the Crossbow directory, contrib/xbow/, on a Windows®-based PC. Installation is
required if you want to do firmware development. Following the installation, read Chapter 3
which covers many important programming topics, instructions for compiling and downloading
the application firmware into your Motes, and useful programming environment customizations.

2.1 What You Need for Installation

 Crossbow’s TinyOS Support Tools CD-ROM

 A Windows®-based PC
• Operating System: Microsoft Windows® (XP, 2000, NT)
• 1 GB or more of free space in destination drive
• 550 MB or more of space in C drive, regardless of destination drive or set the TEMP

directory to your destination drive
 Third-party Software

• WinZip®
• Adobe Acrobat® PDF Reader to view Crossbow’s User’s Manuals and Getting Started

Guide.
• Programmers Notepad (available for free at http://www.pnotepad.org/)

2.2 Installing TinyOS 1.1.0, Development Tools, and TinyOS 1.1.10 Updates

 NOTE: The installation instructions for TinyOS 1.1.0 are found in TinyOS Quick Install.htm
found on the CDROM. If you have a previous version of TinyOS or an unsuccessfully installation
on your system, you must uninstall it. Instructions for this are found in the Uninstalling
TinyOS.htm on the CD.

Also you must install with Administrator privileges. If you don’t, the setup will eventually abort
but it could leave unwanted files and program registries behind. If you are using Windows NT,
you must log on as the “administrator” and not as one who has administrator privileges.

The TinyOS 1.1.0 InstallShield Wizard setup offers the following software packages:

 TinyOS 1.1.0
 TinyOS Tools
 nesC
 Cygwin (An icon for Cygwin will appear on your Desktop when TinyOS 1.1.0 is

installed.)
 Support Tools
 Java 1.4 JDK & Java COMM 2.0
 Graphviz
 AVR Tools

• avr-binutils

Doc. # 7430-0022-07 Rev. A Page 13

 Getting Started Guide

• avr-libc
• avr-gcc
• avarice
• avr-insight

2.2.1 Installing TinyOS 1.1.0
This step may take from tens of minutes to an hour or more depending on your computer’s
speed.

1. Insert the Crossbow TinyOS Support Tools CD-ROM into the CD drive of your PC. Open
up an Explore (right click on start) window to display the folders on the CD-ROM.

2. Click on the folder TinyOS Install/ and then double click on tinyos-1.1.0is.exe.

3. Follow the InstallShield Wizard screens and instructions to guide you through the install
process.

2.2.2 Updating to TinyOS 1.1.10
Many of the Crossbow and a few useful TinyOS applications in the contrib/xbow/ (See
Section 2.2.4 below) directory need to have the updates to TinyOS that have come with the
v 1.1.10. As a convenience the TinyOS 1.1.10 RPM is included in the TinyOS Support
Tools CDROM. The RPM file name is tinyos-1.1.10Jan2005cvs-1.cygwin.noarch.rpm
found under TinyOS Updates folder.

The instructions are as follows:

1. Save your previous work if you have any. We recommend making a archive or copy of
your entire TinyOS-1.x directory and saving it someplace.

2. From TinyOS Tools CDROM copy the file tinyos-1.1.10July2005cvs-
1.cygwin.noarch.rpm (which is in the TinyOS Updates folder) to the
C:\tinyos\cygwin\tmp\ directory.

3. Open a Cygwin window. Then type in
 cd /tmp

 rpm --nodeps --force --ignoreos -Uvh tinyos-1.1.10Jan2005cvs-
1.cygwin.noarch.rpm

(HINT: You can use the Tab key in Cygwin to automatically fill-in the rpm’s name.)

4. The rpm installation will take a while since it includes compiling the java code. After this
step you’re done installing the TinyOS programming environment! The next step is to fix
the make utility bug in TinyOS 1.1.10.

2.2.3 TinyOS 1.1.10’s make Utility Fix

TinyOS 1.1.10’s make reinstall command has a bug that forces building the
application even though the application has already been built (“compiled”). The fix for
this bug is done by editing a file named reinstall.extra, which is located in the directory
C:\tinyos\cygwin\opt\tinyos-1.x\tools\make\avr\.

The fix is done by removing exe0 from line 5. Specifically change line 5 from this
BUILD_DEPS = exe0 setid program delsetid

Page 14 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

To this
BUILD_DEPS = setid program delsetid

The next steps are to add Crossbow’s directory of TinyOS firmware applications and other
code modules.

2.2.4 Copy the Crossbow TinyOS Directory (xbow/) into the contrib/ Directory.
Crossbow has developed a number of firmware applications that are not in the main tinyos-
1.x/apps/ directory. They are on the TinyOS Support Tools CDROM as a zip file
(xbow_<version>.tgz) and need to be copied into the tinyos-1.x/contrib/ directory.

Verify that contrib is subdirectory of the tinyos-1.x directory. That is it is at the same level
as the apps/ directory. If it does not exist, use your Windows® Explore to create a New
Folder and rename it as contrib.

Copy the xbow_<version>.tgz file in the CDROM under TinyOS Updates folder into the
opt/tinyos-1.x/contrib/ directory.

To unzip the .tgz file, use WinZip (which is included in the TinyOS Support Tools
CDROM). Click on File > Open Archive…. Navigate to the tinyos\cygwin\opt\tinyos-
1.x\contrib directory and select the xbow_<version>.tgz. Then click on Open.

When complete, you should see a folder (directory) called xbow directly under the contrib
directory.

2.2.5 XInstall Utility
The XInstall utility sets up soft links so that commonly used Crossbow programs can run
from any directory in Cygwin. Additionally, it also applies the patch for programming via
MIB520 USB interface. In a Cygwin window type the following commands:
 cd /opt/tinyos-1.x/contrib/xbow/bin
 ./xinstall

2.3 Verification of TinyOS and TinyOS Tools Installation

A TinyOS development environment requires the use of the avr gcc compiler, perl, flex, Cygwin
(if you use windows operating system), and the JDK 1.4.x or above. First, we’ll list and check
the versions of programming environment and various tools that have been installed. Next, we;ll
check that the tools have been installed correctly and that the environment variables are set. The
toscheck is a script that will perform these functions.

1. Open a Cygwin window by double-clicking on the icon that should be on your desktop.

2. Type in
rpm –qa

This command line will list in your Cygwin window the various tools and programming
environment versions installed.

Doc. # 7430-0022-07 Rev. A Page 15

 Getting Started Guide

 EXAMPLE—Screen output from the rpm –qa command in Cygwin
jsuh@JSUH-LAPTOP ~
$ rpm -qa
avr-libc-20030512cvs-1w
avarice-2.0.20030825cvs-1w
nesc-1.1-1w
tinyos-contrib-1.1.0-1
tinyos-1.1.10Jan2005cvs-1
avr-binutils-2.13.2.1-1w
avr-gcc-3.3tinyos-1w
avr-insight-pre6.0cvs.tinyos-1w
tinyos-tools-1.1.0-1
task-tinydb-1.1.0-1
tinyos-vm-1.1.0-1

3. Change into the opt/tinyos-1.x/tools/scripts/ directory and run toscheck.
 cd c:/<install dir>/tinyos/cygwin/opt/tinyos-1.x/tools/scripts

 toscheck

The last line of the output should be:
toscheck completed without error

 If any errors are reported, make sure to fix the problem.

 NOTE: After typing in toscheck, you may get this error message:
--> WARNING: CLASSPATH may not include '.' (that is, the symbol for
the current working directory). Please add '.' to your CLASSPATH or
you may experience configuration problems.

This is actually more of a warning than an error. That warning was included because a few
people have had problems. If you don't experience any problems with compiling your Java
applications, you can safely ignore the warning.

If you do experience problems compiling your Java applications, then edit the file called profile
located in C:\tinyos\cygwin\etc\profile\. Change line 16 from

export PATH=”/usr/local/bin:/usr/bin:/bin:$PATH”

to

export PATH=”/usr/local/bin:/usr/bin:/bin:$PATH:.”

Page 16 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

2.4 TinyOS Installation Structure

All the TinyOS apps/, contrib/, doc/, tools/, and tos/ directories are located under <install
dir>/cygwin/opt/tinyos-1.x/. In addition the Makefile is in this folder. The environment variables
for TOSROOT is set to <install dir>/tinyos-1.x/. The TinyOS Tutorial is located under <install
dir>/cygwin/opt/tinyos-1.x/doc/tutorial/. Typically <install dir> is the C:/tinyos/

(a) TinyOS top level structure to tinyos-1.x/

(b) tinyos-1.x/ and subdirectories

(c) tos/ and subdirectories

Figure 2-1. TinyOS and Subdirectory Map

 IMPORTANT. All the example applications explained in the subsequent chapters are
from tinyos/cygwin/opt/tinyos-1.x/contrib/xbow/apps directory. These are applications developed
and thoroughly tested by Crossbow. Crossbow will not support you for the other applications
that are found under main apps tree (tinyos/cygwin/opt/tinyos-1.x/apps/)

Doc. # 7430-0022-07 Rev. A Page 17

 Getting Started Guide

2.4.1 TinyOS online Resources / Major and MinorReleases
The website for TinyOS is at www.tinyos.net. There you will find the latest news,
downloads, and links to the TinyOS user’s community, and many other resources.
Furthermore, the latest source code can always be downloaded from the TinyOS project
page via CVS at SourceForge (http://sourceforge.net/projects/tinyos/). Occasionally
TinyOS developers release a convenient-to-install CVS snapshot in the form of an RPM.
These are minor releases of TinyOS and are posted at www.tinyos.net/download.html.

IMPORTANT: There are differences between major and minor releases of TinyOS.
The major releases are strenuously and systematically tested by the TinyOS development
team and by Crossbow. We test all applications in the release, run through the applications
in the on-line tutorial and Getting Started Guide multiple times, and check that the
documentation is up-to-date. We also post a list of known issues and problems for TinyOS
1.1.0 at http://www.xbow.com/Support/known-bugs-1_1_0.htm. If your project requires
stability, we recommend that you stay with the fully-tested releases.
A minor release or CVS snapshot release is very nearly that: a snapshot of the CVS tree in
a convenient-to-install package. The intention behind the snapshots is to get the latest code
out to developers without requiring developers to maintain a CVS tree. The code in the
snapshot releases has generally been in the tree for approximately one month, but that
doesn’t guarantee that anyone other than the developer tested it. The resulting RPM goes
through the TinyOS regression test suite (see regression/). If you’d like the bleeding edge
code and don’t mind the inherent risks, upgrade to the minor releases as they become
available.

We have included the TinyOS 1.1.10 RPM update as described in Section 2.2.2, but please
remember that it has not been as thoroughly tested as TinyOS 1.1.0.

3

Page 18 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

Programming Environment Customization

3.1 Setting Aliases

Once you have successfully installed TinyOS, it is recommended that you setup aliases to
commonly used commands and accessed directories. Aliases are to be edited at the bottom of the
filed called profile which is located in <install dir>/tinyos/cygwin/etc/.

These aliases are useful for quickly changing to commonly used directories while in the Cygwin
shell. Although some the aliases appear as two lines, all are written as one line.
alias cdtinyos=“cd c:/<install dir>/tinyos/cygwin/opt/tinyos-1.x”

alias cdjava=“cd c:/<install dir>/tinyos/cygwin/opt/tinyos-
1.x/tools/java”

alias cdxbow=“cd c:/<install dir>/tinyos/cygwin/opt/tinyos-
1.x/contrib/xbow”

 NOTE: If the <install dir>/ is the folder Program Files, then you must enter in the text
Program\ Files to correctly handle the space between the two words when changing
directories in Cygwin.

These and other alias can be setup to make changing directories and other commands easier. To
make your own aliases, use the format as shown in the examples above.

 IMPORTANT. All the example applications explained in the subsequent chapters are
from the tinyos/opt/cygwin/tinyos-1.x/contrib/xbow/apps/ directory. These are applications
developed and thoroughly tested by Crossbow. Crossbow will not support you for the other
applications that are found under main apps tree (tinyos-1.x/apps)

3.2 Compiling TinyOS Applications

The new release of TinyOS supports the MICAz, MICA2 and MICA2DOT Mote processor-radio
(MPR) hardware platforms. The syntax to type in a Cygwin window for compiling (building)
application code is of the form:

make <platform>

The name to be used for <platform> can be found in Table 3-1.

Doc. # 7430-0022-07 Rev. A Page 19

 Getting Started Guide

Table 3-1. Listing of Hardware Platforms (<platform>)

Processor/Radio Platform For <platform> use

MICAz (MPR2400 series) micaz

MICA (MPR3x0 series) mica

MICA2 (MPR4x0 series) mica2

MICA2DOT (MPR5x0 series) mica2dot

3.3 Programming Boards

The TinyOS development environment supports a variety of programming tools. The ones that
are mentioned or described in this Guide are. The Cygwin/UISP names for these boards is listed
on

 The MIB500 parallel port programming board.
 The MIB510CA serial port programming board.
 The MIB520CA USB port programming board
 The MIB600CA Ethernet port programming board.

Table 3-2. Listing of Mote Interface Board (“MIB”) Programming Boards (<programmer>)

MIB Board For <programmer> use

MIB600 eprb

MIB510 mib510

MIB520 mib520

MIB500 Default, no additional information needed

The standard programming software used in TinyOS is the Micro (the Greek letter “mu”) In-
System Programmer or UISP. This program, which comes as a part of the TinyOS release, takes
various arguments according to the programmer hardware and the particular programming action
desired (erase, verify, program, etc.). To simplify using this tool, the TinyOS environment
invokes the UISP for you with the correct arguments whenever you issue an install or
reinstall command. You also need specify the type of device you are using and how to
communicate with it. This is done using environment variables.

 IMPORTANT. All the apps under contrib/xbow use the TinyOS’s new make syntax. A
detailed explanation of this syntax is provided in Readme file found under tinyos-1.x/tools/make.
The syntax of typical Make file for these look like below.

 EXAMPLE—The makefile used for tinyos/cygwin/opt/tinyos-1.x/contrib/xbow/ applications
$Id: Makefile,v 1.6 2004/08/06 09:30:24 husq Exp $
XBOWROOT=%T/../contrib/xbow/tos

COMPONENT=TestSensor

Page 20 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

SENSORBOARD=mts310

PFLAGS= -I$(XBOWROOT)/interfaces -I$(XBOWROOT)/system -
I$(XBOWROOT)/platform/$(PLATFORM) -I$(XBOWROOT)/lib -
I$(XBOWROOT)/sensorboards/$(SENSORBOARD)
include ../MakeXbowlocal
include ${TOSROOT}/tools/make/Makerules New syntax in Makefile

3.3.1 MIB500/Parallel Port Programmers
This is the default programmer device. No additional command line parameters need to be
specified when using this programmer.

The default command line entry is make <platform> install

3.3.2 MIB510/Serial Port Programmers
Append the default command line with mib510,com<x> where <x> is the serial port
number where the MIB510 is attached. Before running this command check you own
system to see what ports are available.

 EXAMPLE—Command Line Entry for MIB510
This example is for programming a MICAz from a MIB510 that is connected to a
PC’s serial port COM1.

make micaz install mib510,com1

 NOTE: If your computer does not have a DB9 serial port and are using a USB to DB9 serial
port converter, you must know what port (COM) number your computer has assigned to the
USB port. Use that COM port number when doing the above command. However, there are
cases where your computer will issue a COM port number but is not what Cygwin will
communicate through. That is, by trial and error you will have to try different numbers for the
COM port.

3.3.3 MIB520 USB Programmers
MIB520 uses FTDI FT2232C to use USB port as virtual COM port. Hence you need to
install FT2232C VCP drivers.

• When you plug a MIB520 into your PC for the first time, the Windows detects and
reports it as a new hardware. Please select “Install from a list or specific location
(Advanced)” and browse to “MIB520 Drivers” folder of the TinyOS Support Tools
CDROM. Install shield wizard will guide you through the installation process.

• When the drivers are installed, you will see two serial ports added under the Control
Panel System Hardware Device Manager Port. Make a note of the assigned
COM port numbers.

Doc. # 7430-0022-07 Rev. A Page 21

 Getting Started Guide

• The two virtual serial ports for MIB520 are comx and com(x+1); comx is for Mote
programming and com(x+1) is for Mote communication.

Append the default command line with mib520,com<x> where <x> is the COM port
number to which the MIB520 is attached. Before running this command check and verify
your PC to see which ports are available.

 EXAMPLE—Command Line Entry for MIB520
This example is for programming a MICAz from a MIB520 that is connected to a
PC’s serial port COM7.

make micaz install mib520,com7

3.3.4 MIB600 Ethernet Programmers
In order to use MIB600 Ethernet programming board, you need to assign an IP address to
the device. Every device connected to an IP network must have a unique IP address. This
address is used to reference the specific unit. Every TCP connection and every UDP
datagram is defined by a destination IP address and a port number

1. Install Lantronix device installer (DeviceInstaller36.zip) from the CD ROM under
Miscellaneous folder. This can also be downloaded from http://www.lantronix.com/

2. Connect the MIB600 to the network using RJ-45 Ethernet cable and supply power using
the power supply that was included in the packaging. Make sure the Power Switch SW2
is in “5V” position.

3. Click the Start button on the Task Bar and select start > Programs > Lantronix > Device
Installer > Device Installer. The Device Installer window displays.

4. Click on Search button and you will see a list of devices that were found with the IP
address and corresponding Hardware address.

5. Look and match the hardware address of your MIB600 board (e.g., 00-20-4A-63-47-31)
and select it. Click on “Assign IP” and follow the instructions. Note down the IP address
that you assigned.

6. Once you have assigned the IP address of the MIB600, the Cygwin command line to
program a Mote is

 make <platform> install eprb,<IP_Address_of_MIB600>

 EXAMPLE—Command Line Entry for MIB600
The following command is for programming a MICA2 Mote on an MIB600 is
assigned with IP address 192.168.100.123.

 make mica2 install eprb,192.168.100.123

Page 22 Doc. # 7430-0022-07 Rev. A

http://www.lantronix.com/

Getting Started Guide

3.4 Installing TinyOS Applications into a Mote

The programming tools also include a method of programming unique node addresses without
having to edit the TinyOS source code directly. To set the node address/ID during program load,
the general syntax for installing is:

make <platform> re|install,<n> <programmer>,<port>

where <programmer> ,<port> the name of the programmer the port ID or address or
number of the host PC to which the programmer is attached,,<n> is an
optional number (in decimal) to set the node ID or address, and <platform> is the
type of Mote processor/radio hardware platform.

The difference between install and reinstall is explained below.

install,<n>—compiles the application for the target platform, sets the node ID/address and
programs the device (Mote).

reinstall,<n>—sets the node ID/address and downloads the pre-compiled program (into
the Mote) only and does not recompile. This option is significantly faster.

Assigning a node ID by using the “,<n>” is optional and is discussed further in the next
subsection.

3.5 Setting the Group ID and Node Address for the Mote Network

TinyOS messages contain a group ID in the header, which allows multiple distinct groups of
Motes to share the same radio channel. If you want to separate multiple groups of Motes that are
one the same radio channel, you need to set the group ID to a unique 8-bit value to allow TinyOS
to filter out those messages. The default group ID is 0x7d. You can set the group ID by defining
the preprocessor symbol DEFAULT_LOCAL_GROUP in a MakeXbowlocal file which is located in
tinyos-1.x/contrib./xbow/apps/ directory. Section 3.7 has information about how to edit a
MakeXbowlocal file. In addition, the message header carries the destination node number, which
is a 16-bit value.

IMPORTANT: Except for decimal numbers 126 (the TOS_UART_ADDR 0x007E) and
255 (the TOS_BCAST_ADDR 0xFFFF), all other values between 0 and 254 are permissible. The
number 0 is typically reserved for the base station Mote.
Setting the node address is important when programming Motes for a sensor network (as in
Section 3.4. The node address/ID of your Mote is set when you download the application into the
Mote. The command line entry is

make <platform> re|install,<n> <programmer>,<port>

 EXAMPLE—MIB510: Assigning a node address/ID of 38 to a MICA2. The MIB510 on the
PC’s COM1 serial port.

make mica2 install,38 mib510,com1

Doc. # 7430-0022-07 Rev. A Page 23

 Getting Started Guide

EXAMPLE— MIB520: Assigning a node address/ID of 38 to a MICA2. The Virtual COM
port of MIB520 on the PC’s are COM3 and COM4.

make mica2 install,38 mib520,com3

 EXAMPLE—MIB600: Assigning a node address/ID of 38 to a MICA2. The MIB600’s IP
address is: 10.1.1.248.

make mica2 install,38 eprb,10.1.1.248

3.6 The MakeXbowlocal File

The MakeXbowlocal file was developed by Crossbow to be used with applications within the
contrib/xbow/apps/ directory. It provides a convenient way for users to change the local group
ID, channel (RX/TX frequency) and RF transmission power. It must be used with the
CC1000Const.h file found in opt/tinyos-1.x/contrib/xbow/tos/platforms/mica2/. If you added the
xbow directory after going through Chapter 2, those files are now available.

To use it, double-check that the Makefile in a particular application’s top-level directory has the
following line:

include ../MakeXbowlocal

By adding this line in your applications Makefile will cause the compiler to include the
MakeXbowlocal file. Below the actual contents of MakeXbowlocal and where to make the
changes needed to change the local group, channel, RF transmission power, and
programmer/COM port number.

 EXAMPLE—Portions of the MakeXbowlocal File located under tinyos/cygwin/opt/tinyos-
1.x/contrib/xbow/apps/.

MakeXbowlocal - Local Defines related to apps in contrib/xbow directory

Settings for the the Mote Programmer,
If you are using MIB510 and it is connected to COM1
of your PC use the following setting
If you are using MIB520 and the virtual COM ports of are COM3 and COM4
For MIB600 use "eprb" setting and provide the hostname/IP address

DEFAULT_PROGRAM=mib510
#DEFAULT_PROGRAM=mib520
#DEFAULT_PROGRAM=eprb
MIB510=COM1
#MIB520=COM3
#EPRB=10.1.1.238

Page 24 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

set Mote group id
- default mote group

DEFAULT_LOCAL_GROUP=125

set radio channel (freq)
-Uncomment ONLY one line to choose the desired radio operating freq.
-Select band based on freq label tag on mote (916,433..)
(i.e. 433Mhz channel will not work for mote configured for 916Mhz)

916 MHz Band

CHANNEL_00 - 903 MHz CHANNEL_02 - 904 MHz CHANNEL_04 - 905 MHz
CHANNEL_06 - 906 MHz CHANNEL_08 - 907 MHz CHANNEL_10 - 908 MHz
CHANNEL_12 - 909 MHz CHANNEL_14 - 910 MHz CHANNEL_16 - 911 MHz
CHANNEL_18 - 912 MHz CHANNEL_20 - 913 MHz CHANNEL_22 - 914 MHz
CHANNEL_24 - 915 MHz CHANNEL_26 - 916 MHz CHANNEL_28 - 917 MHz
CHANNEL_30 - 918 MHz CHANNEL_32 - 919 MHz CHANNEL_34 - 920 MHz
CHANNEL_36 - 921 MHz CHANNEL_38 - 922 MHz CHANNEL_40 - 923 MHz
CHANNEL_42 - 924 MHz CHANNEL_44 - 925 MHz CHANNEL_46 - 926 MHz
CHANNEL_48 - 927 MHz
#CFLAGS = -DCC1K_DEFAULT_FREQ=CC1K_914_077_MHZ
#CFLAGS = -DCC1K_DEFAULT_FREQ=CC1K_915_998_MHZ
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_00
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_02
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_04
. . .
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_916BAND_CHANNEL_48
#--
433 MHz Band

CHANNEL_00 - 433.113 MHz CHANNEL_02 - 433.616 MHz
CHANNEL_04 - 434.108 MHz CHANNEL_06 - 434.618 MHz

#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_433BAND_CHANNEL_00
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_433BAND_CHANNEL_02
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_433BAND_CHANNEL_04
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_433BAND_CHANNEL_06
##--
315 MHz Band

CHANNEL_00 - 315 MHz

##--
#CFLAGS = -DCC1K_DEFAULT_FREQ=RADIO_315BAND_CHANNEL_00

Set Radio Power
- Radio transmit power is by a value (RTP) between 0x00 and 0xFF
- RTP = 0 for least power; =0xFF for max transmit power
#---
For Mica2 and Mica2Dot
Freq Band: Output Power(dBm) RTP
916 Mhz -20 0x02
-10 0x09
0 (1mw) 0x80
5 0xFF
433 Mhz -20 0x01
-10 0x05
0 (1mw) 0x0F

Doc. # 7430-0022-07 Rev. A Page 25

 Getting Started Guide

10 0xFF

CFLAGS += -DRADIO_XMIT_POWER=0xFF

MICAZ RF Power Levels
#TXPOWER_MAX TXPOWER_0DBM
#TXPOWER_0DBM 0x1f //0dBm
#TXPOWER_M3DBM 0x23 //-3dBm
#TXPOWER_M5DBM 0x19 //-5dBm
#TXPOWER_M10DBM 0x0B //-10dBm
#TXPOWER_M15DBM 0x07 //-15dBm
#TXPOWER_M25DBM 0x03 //-25dBm
#TXPOWER_MIN TXPOWER_M25DBM

CFLAGS +=-DCC2420_TXPOWER=TXPOWER_MAX
#CFLAGS +=-DCC2420_TXPOWER=TXPOWER_M0DBM
#CFLAGS +=-DCC2420_TXPOWER=TXPOWER_M3DBM
#CFLAGS +=-DCC2420_TXPOWER=TXPOWER_M5DBM
#CFLAGS +=-DCC2420_TXPOWER=TXPOWER_M10DBM
#CFLAGS +=-DCC2420_TXPOWER=TXPOWER_M15DBM
#CFLAGS +=-DCC2420_TXPOWER=TXPOWER_M25DBM
#CFLAGS +=-DCC2420_TXPOWER=TXPOWER_MIN

Zigbee Channel Selection
CHANNEL_11 - 2405 MHz CHANNEL_12 - 2410 MHz CHANNEL_13 - 2415 MHz
CHANNEL_14 - 2420 MHz CHANNEL_15 - 2425 MHz CHANNEL_16 - 2430 MHz
CHANNEL_17 - 2435 MHz CHANNEL_18 - 2440 MHz CHANNEL_19 - 2445 MHz
CHANNEL_20 - 2450 MHz CHANNEL_21 - 2455 MHz CHANNEL_22 - 2460 MHz
CHANNEL_23 - 2465 MHz CHANNEL_24 - 2470 MHz CHANNEL_25 - 2475 MHz
CHANNEL_26 - 2480 MHz

15, 20, 25 & 26 seem to be non-overlapping with 802.11

#CFLAGS +=-DCC2420_DEF_CHANNEL=11
#CFLAGS +=-DCC2420_DEF_CHANNEL=12
. . .
#CFLAGS +=-DCC2420_DEF_CHANNEL=25
#CFLAGS +=-DCC2420_DEF_CHANNEL=26

 IMPORTANT: Don’t use Microsoft® Word to edit the file. A recommended text editor is
Programmers Notepad, which is included in the CDROM under Miscellaneous folder. This is
also available for free at http://www.pnotepad.org/.

 NOTE: In order to comply with "Biyjacku" (Japanese standard), the Radio Transmit
power for the MPR420 MICA2 must have PA_POW set to 0x01 in MakeXbowlocal file
shown above.

Page 26 Doc. # 7430-0022-07 Rev. A

http://www.pnotepad.org/

Getting Started Guide

3.7 Radio Frequencies

The radio transceivers on the MICAz, MICA2, and MICA2DOT support multiple frequencies.
Units are delivered at a pre-defined channel in either 315 MHz, 433 MHz, 915 MHz, or 2.4 GHz
ISM bands. All of the coefficients for radio tuning for the MICA2 and MICA2DOT are
contained in the TinyOS file CC1000Const.h located in tos/platform/mica2/.

Users must compile in the correct base radio frequency otherwise radio communication will fail.
The best and safest way to make sure you’re compiling for the correct frequency for any Mote
platform is to edit the MakelXbowocal file (described in Section 0 above).

For MICA2 and MICA2DOT users, sometimes the frequency of interest is not available in the
MakeXbowlocal file. In those cases, do the following steps.

1. Add a CFLAGS line of text of the following format:

CFLAGS=-DCC1K_DEF_FREQ=<Desired_Freq>

into a particular applications makefile. The value in <Desired_Freq> is the valid frequency
in Hertz (Hz). The command line is case and space sensitive, so be sure to type in the line
carefully.

2. Check and comment out (with a “#”) all frequencies in the MakeXbowlocal file, especially is

using applications in the tinyos/opt/cygwin/tinyos-1.x/contrib/xbow/apps/ directory.

 EXAMPLE: Adding a CFLAGS statement to the end of CntToLedsAndRfm’s makefile
to set the radio’s channel to 868.001000 MHz.

COMPONENT=CntToLedsAndRfm
PFLAGS=-I%T/lib/Counters

XBOWROOT=%T/../contrib/xbow/tos

PFLAGS += -I$(XBOWROOT)/platform/mica2

include ../MakeXbowlocal
include $(TOSROOT)/tools/make/Makerules

CFLAGS=-DCC1K_DEF_FREQ=868001000

For MICAz users, the CFLAGS syntax is slightly different. All 16 of the 802.15.4 channels in
the 2.4 GHz band are already in MakeXbowlocal. However, Instead use

Doc. # 7430-0022-07 Rev. A Page 27

 Getting Started Guide

 CFLAGS=-DCC2420_DEF_CHANNEL=<Desired_Channel>

 EXAMPLE: Adding a CFLAGS statement to the end of CntToLedsAndRfm’s makefile
to set the radio’s channel of 802.15.4 channel 15.

COMPONENT=CntToLedsAndRfm
PFLAGS=-I%T/lib/Counters

XBOWROOT=%T/../contrib/xbow/tos

PFLAGS += -I$(XBOWROOT)/platform/mica2

include ../MakeXbowlocal
include $(TOSROOT)/tools/make/Makerules

CFLAGS=-DCC1K_DEF_CHANNEL=15

Page 28 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

4 Introduction to TinyOS and NesC

TinyOS is an open-source operating system designed for wireless embedded sensor networks. It
features a component-based architecture, which enables rapid innovation and implementation
while minimizing code size as required by the severe memory constraints inherent in sensor
networks. TinyOS’s component library includes network protocols, distributed services, sensor
drivers, and data acquisition tools—all of which can be used as-is or be further refined for a
custom application. TinyOS’s event-driven execution model enables fine-grained power
management yet allows the scheduling flexibility made necessary by the unpredictable nature of
wireless communication and physical world interfaces.

4.1 TinyOS Programming philosophy

The TinyOS operating system, libraries, and applications are all written in nesC, a new
structured component-based language. The nesC language is primarily intended for embedded
systems such as sensor networks. NesC has a C-like syntax, but supports the TinyOS
concurrency model, as well as mechanisms for structuring, naming, and linking together
software components into robust network embedded systems. The principal goal is to allow
application designers to build components that can be easily composed into complete, concurrent
systems, and yet perform extensive checking at compile time.

TinyOS also defines a number of important concepts that are expressed in nesC. A brief
summary is provided here.

Table 4-1. Description of the Main TinyOS/nesC Concepts

TinyOS/nesC Concept Description

Application A TinyOS/nesC application consists of one or more components, linked
(“wired”) together to form a run-time executable

Component
Components are the basic building blocks for nesC applications. There are
two types of components: modules and configurations. A TinyOS component
can provide and use interfaces.

Module A component that implements one or more interfaces.

Configuration

A component that wires other components together, connecting interfaces
used by components to interfaces provided by others. (This is called wiring.)
The idea is that a developer can build an application as a set of modules,
wiring together those modules by providing a configuration. Furthermore,
every nesC application is described by a top-level configuration that specifies
the components in the application and how they invoke one another.

Interface

An interface is used to provide an abstract definition of the interaction of two
components. This concept is similar to Java in that an interface should not
contain code or wiring. It simply declares a set of functions that the interface’s
provider must implement—commands—and another set of functions the
interfaces’ requirer must implement—events. In this way it is different than
Java interfaces which specify one direction of call. NesC interfaces are bi-
directional. For a component to call the commands in an interface it must
implement the events of that interface. A single component may require or
provide multiple interfaces and multiple instances of the same interface.
These interfaces are the only point of access to the component.

NesC also defines a concurrency model, based on tasks and hardware event handlers, and
detects data races at compile time. When looking at the files in an application directory, you can

Doc. # 7430-0022-07 Rev. A Page 29

 Getting Started Guide

identify the nesC files because it uses the extension “.nc” for all source files—interfaces,
modules, and configurations.

4.2 Concurrency Model

TinyOS executes only one program consisting of selected system components and custom
components needed for a single application. There are two threads of execution: tasks and
hardware event handlers. Tasks are functions whose execution is deferred. Once scheduled,
they run to completion and do not preempt one another. Hardware event handlers are executed in
response to a hardware interrupt and also run to completion. Unlike a task, it may preempt the
execution of a task or other hardware event handler. Commands and events that are executed as
part of a hardware event handler must be declared with the async keyword.

Because tasks and hardware event handlers may be preempted by other asynchronous code, nesC
programs are susceptible to certain race conditions. Races are avoided either by accessing shared
data exclusively within tasks, or by having all accesses within atomic statements. The nesC
compiler reports potential data races to the programmer at compile-time. It is possible the
compiler may report a false positive. In this case a variable can be declared with the norace
keyword. The norace keyword should be used with extreme caution.

4.3 An Example Application: Blink

So far this is all fairly abstract—let’s look at a concrete example: the simple test program Blink
found in /tinyos-1.x/contrib/xbow/apps/Blink/. This application simply causes the red LED on the
Mote to turn on and off at 1 Hz.

Blink consists of two components: a module, BlinkM.nc and a configuration, Blink.nc.
Remember that all applications require a single top-level configuration, which is typically named
after the application itself. In this case Blink.nc is the configuration for the Blink application
and the source file that the NesC compiler uses to generate the executable for the Mote.
BlinkM.nc, on the other hand, actually provides the implementation of the Blink application. As
you might guess, Blink.nc is used to wire the BlinkM.nc module to other components that
the Blink application requires.

The reason for the distinction between modules and configurations is to allow a system designer
to quickly “snap together” applications. For example, a designer could provide a configuration
that simply wires together one or more modules, none of which she actually designed. Likewise,
another developer can provide a new set of “library” modules that can be used in a range of
applications.

Sometimes (as is the case with Blink and BlinkM) you will have a configuration and a module
that go together. When this is the case, the convention used in the TinyOS tree is that Foo.nc
represents a configuration and FooM.nc represents the corresponding module. While you could
name an application’s implementation module and associated top-level configuration anything
(ncc uses the ‘COMPONENT’ definition in the application’s Makefile to find the top-level
configuration), to keep things simple we suggest that you adopt this convention in your own
code. There are several other naming conventions used in TinyOS code.

Page 30 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

4.4 Compiling the Blink Application

TinyOS supports multiple platforms. Each platform has its own directory in the tos/platform/
directory.

1. Open a Cygwin window by double-clicking the icon that can be found on your desktop.

2. Change directory (“cd”) to tinyos/cygwin/opt/tinyos-1.x/contrib/xbow/apps/Blink/ directory.
Compiling and installing Blink is a good exercise to make sure that the most basic hardware
is working.

3. Type make <platform> in the Cygwin window. This should complete successfully and create
a binary (.srec) image of your program for the Motes.

4. All objects, generated includes, and executables are placed in the bin directory for the
specific platform, e.g., /tinyos-1.x/contrib/xbow/apps/Blink/build/mica2/.

You should, of course, observe errors and warnings that arise in building your application. This
example should not have any. At the very end, the make command shows you a piece of the
load map that tells you whether your application fits.

4.5 Programming a Mote with the Application Blink
To download an application into the MICAz/MICA2 Mote,

1. Connect the 51-pin male connector of the MICAz/MICA2 to the 51-pin female connector on
the MIB programming board (see Figure 4-1).

Or to download into a MICA2DOT,

1. Connect the female connectors of the MICA2DOT to the male connectors of the MIB’s
MICA2DOT programming bay located on the “underside” of the MIB programming board
(see Figure 4-2).

 NOTE: The Professional MOTE-KITs come with two MDA500 data acquisition boards. These
are circular PCBs populated only with 19 pins. These can be used to make it easier to attach a
MICA2DOT to the MIB510. This is done by connecting the 19-pin female-side of the MDA500 to
the 19 male pins on the MIB510. The flexibility of the board and pins of the MDA500 helps to
make up for small misalignments between the boards and avoids bending of pins on MIB510.

 WARNING: When programming a MICAz, MICA2 with the MIB510/MIB520, turn OFF
the battery switch. For a MICA2DOT, remove the battery before inserting into the
MIB510/MIB520. The MICAz, MICA2s, and MICA2DOTs do not have switching diodes to
switch between external and battery power.

Doc. # 7430-0022-07 Rev. A Page 31

 Getting Started Guide

Figure 4-1. MICAz/MICA2 plugged into top-
side of an MIB510.

Figure 4-2. MICA2DOT plugged into bottom-
side of an MIB510.

2. Connect your Mote programming interface board (“MIB”) to the PC Serial Port (if using a
MIB510) or to the PC USB port (if using MIB520) or to the local area network port or device
(if using a MIB600).

3. Power the MIB by connecting the output plug of the AC wall power adaptor (5 VDC) to the
connector (labeled as J7) on the MIB510/MIB600. The MIB520 gets its power from USB
port of the host PC. The green LED at location D3 and labeled as “SP PWR” should be on.

4. Attach your MICAz or MICA2 Mote to the MIB programmer via the 51-pin connector.

5. Build and install the application firmware by typing

make <platform> reinstall <programmer>,<port>

If you are using Windows and the install doesn’t work, you make need to check the port
specified to the UISP. You should see the upload take place (this may take several seconds) and
the red LED should light up once a second.

 WARNING: Users are strongly advised to use a Crossbow MIB510 or MIB600 interface board
with an external wall mounted power supply (5 to 7 VDC). If using batteries, check the battery
voltage. If the battery voltage is less than 3.0 V the flash memory may not reprogrammed correctly.
This can also cause the ATMega128L fuses to be set incorrectly which will defeat any further
reprogramming. There have been numerous reported difficulties with programming Motes. These
include program failure, flash verification errors, and dead Motes.

 For MIB500 Users: If you still get flash verification errors, please refer to the suggestions provided
in the application note: http://www.xbow.com/Support/Support_pdf_files/UISPHELP.pdf.

 After rebooting your PC you may need to power cycle the MIB500 and hit the reset switch labeled as
RSTN at location “SW1.”

4.6 Generating the Component Structure Documentation

You can view a graphical representation of the component relationships within an application.
TinyOS source files include metadata within comment blocks that ncc—the nesC compiler—
uses to automatically generate html-formatted documentation.

Page 32 Doc. # 7430-0022-07 Rev. A

http://www.xbow.com/Support/Support_pdf_files/UISPHELP.pdf

Getting Started Guide

To generate the documentation, go to the tinyos-1.x/contrib./xbow/apps/Blink/ directory use the
following command:

make <platform> docs

The resulting documentation will have the filename be generated in the file
docs/nesdoc/<platform>.docs/nesdoc/<platform>/index.html. This is the main index to all
documented applications.

The directory index takes you to an html file that looks like the diagram shown below.

Apps Components Interfaces All Files Source Tree

App: Blink

Component Graph (text version, help)

Main

BlinkM
LedsC

SingleTimer

StdControl

StdControl

Leds

Timer

Browsing through the graphical representation of the component wiring using your mouse is
really helpful to understand the overall structure of TinyOS.

4.7 Radio Communications

This Section introduces radio communication. The applications that we will consider are
CntToLedsAndRfm and RfmToLeds. CntToLedsAndRfm is a variant of Blink. It outputs the
current counter value to two output interfaces: the LEDs and the radio communication stack.
RfmToLeds receives data from the radio and displays it on the LEDs. Programming one Mote
with CntToLedsAndRfm will cause it to transmit its counter value over the radio; programming
another with RfmToLeds causes it to display the received counter on its LEDs. (For more details
on different component modules, look at Lesson 4 of the TinyOS Tutorial.)

IMPORTANT: If you’re using MICA2 or MICA2DOT Motes, you will need to ensure
that you’ve selected a radio frequency compatible with your Motes. If your Motes do not
communicate in this Section, the likely reason is that you don’t have your frequency set
correctly. Refer back to Section 3.6 on how to set the radio frequency.

MICAz currently uses IEEE 802.15.4 channel 0 (2.405 GHz) and ignores DCC1K_DEF_FREQ.

4.7.1 Sending Messages with CntToLedsAndRfm
1. Change your directory to the CntToLedsAndRfm directory (inside a Cygwin window).

Doc. # 7430-0022-07 Rev. A Page 33

 Getting Started Guide

 cd /opt/tinyos-1.x/contrib/xbow/apps/CntToLedsAndRfm

2. Attach a Mote to your programming board. Build and install the application.
 make <platform> install <programmer>,<port>

3. Remove the Mote from the MIB programmer, install batteries if needed, and turn on.
Assuming you have batteries are OK, you should see a 3-bit binary counter on the LEDs.
And while it is not apparent, it is, of course, transmitting the value over the radio.

4.7.2 Receiving Messages with RfmToLeds
4. Attach a second Mote to an MIB programming board.

5. Change directory to RfmToLeds. Build and install the application.
cd ../RfmToLeds

make <platform> install <programmer>,<port>

6. Remove the Mote from the MIB and turn on.

If you turn the Mote with CntToLedsAndRfm, you will see that the LED counting stops on
both Motes.

4.7.3 Radio Transmit/Receive FAQ
There are many several reasons why you might not be able to communicate. Here are some
things to check if you can’t get your Motes to communicate with these two applications.

 Correct radio frequency? Be sure that you have set the radio frequency (channel)
correctly in your MakeXbowlocal file.

 Correct group ID? Motes on the same channel but different group IDs will not be able
to communicate with each other.

 Base station switch set to transmit only? If the switch labeled “SW2” is in the “ON”
position, the MIB will only transmit but not receive.

 RF null location? Move your Mote to a slightly different location or about ± 1m.

 RF overload? You may have too many Motes close to each other. Or you may be near
a strong RF source such as a major airport or radio transmitters.

 Antennas installed and correctly oriented? Motes without antennas will not have much
success in transmitting or receiving signals beyond a few cm. Typically you should
have your antennas mounted vertically with respect to the ground. In rare cases, the
antennas itself may be faulty; try other antennas to see if performance improves.

 Motes’ radio TX/RX range exceeded? If none of the above apply, you may have to
place your Motes closer together. In fact one of the practical uses of these two
applications is to do a crude TX/RX site survey. This is done by placing the Mote with
CntToLedsAndRfm in one location. Move the Mote with RfmToLeds until you stop
seeing the 3-bit binary count. This would be an approximate distance to for one hop
between two Motes.

 NOTE: You may have to place the Mote with RfmToLeds on a surface and step away since your body
is a source of radio interference.

Page 34 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

4.8 Learning More About TinyOS and nesC

This section was only a brief introduction to some of the concepts in TinyOS and nesC. An
online version of the tutorial for a more complete introduction to TinyOS is at

http://www.tinyos.net/tinyos-1.x/doc/tutorial/

 IMPORTANT:

Please note that the tutorial references the applications reference to tinyos-1.x/apps found under
the main tree. These are public domain applications and Crossbow assumes no responsibility for
the support. Hence the support needs to be obtained from TinyOS help group. For more details
go to, http://www.tinyos.net/ or e-mail tinyos-help@Millennium.Berkeley.EDU

Doc. # 7430-0022-07 Rev. A Page 35

http://www.tinyos.net/tinyos-1.x/doc/tutorial/
http://www.tinyos.net/
mailto:tinyos-help@Millennium.Berkeley.EDU

 Getting Started Guide

5 Test Applications and Drivers for Sensor and Data
Acquisition Boards

 WARNING: To use these test applications and drivers, you must update to TinyOS 1.1.10
as described in Chapter 2 of this Guide.

This Chapter will help you test your sensor and data acquisition boards. A set of test applications
and a corresponding UI called XListen are provided to enable user’s to do basic testing and
verification of their sensor and data acquisition (DAQ) boards. The XListen program displays a
sensor’s or DAQ’s output in a Cygwin window. Listed in the Table 5-1 are TinyOS test
application and drivers to evaluate your the sensor and/or DAQ board.

Table 5-1. Test and/or Demo Applications and Drivers for Crossbow’s Sensor and Data
Acquisition Boards

Sensor or DAQ Board Test/Demo Application Driver Name
MTS101 XSensorMTS101 basicsb

XSensorMTS510
MTS510

Surge_Reliable_Dot
mts510

XSensorMDA500
MDA500

Surge_Reliable_Dot
basicsb1

MTS300/310 Surge_Reliable mts310
MTS400/420 XSensorMTS400 mts400

MDA300 XSensorMDA300 mda300
1basicsb drivers are located in the tinyos/cygwin/opt/tinyos-1.x/tos/sensoboards/ directory, whereas
the other drivers are in the tinyos/cygwin/opt/tinyos-.x/contrib/xbow/tos/sensorboards/ directory.

5.1 Drivers

A driver is a set of software code modules written in nesC which supports the lower level
functionality of the sensor board. This is needed by all TinyOS applications. Driver code is
typically developed during the sensor board design stage. These drivers should be in the
opt/tinyos-1.x/contrib/xbow/tos/sensorboards/ directory.

IMPORTANT: Follow the instructions per Section 2.2.4 if you have not installed
Crossbow’s TinyOS subdirectories.

5.2 Test Applications: The XSensor Series

The XSensor series of test applications was developed to quickly and easily test Crossbow sensor
and/or data acquisition boards. Furthermore, these applications are a set of well-documented
code modules, which users can modify for their own TinyOS applications.

To install a test application, navigate to opt/tinyos-1.x/contrib/xbow/apps and change to the
directory that corresponds to the sensor board you want to test. The Mote hardware functionality
can be tested in two different ways:

Page 36 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

 Over the UART (Universal Asynchronous Receive Transmit): See Section 5.2.1.

 Over an RF (Radio Frequency) link: See Section 5.2.2.

5.2.1 Testing a Sensor Board over the UART
Testing your sensor board over the UART bypasses the need for an RF link. This test is
useful if you want to test the sensor board without having to deal with possible radio
problems. It also requires only one Mote, and you only have to program the Mote with an
appropriate XSensor application.

 EXAMPLE—Installing XSensorMDA500 Test Application for the MICA2DOT on a
MIB510 on serial port COM1.
Change your directory to the test application.

cd /opt/tinyos-1.x/contrib/xbow/apps/XSensorMDA500

Attach a MICA2DOT to the bottom side pins on the MIB. Build and install the application to the
Mote (with unique node ID other than 0).

make mica2dot install,1 mib510,com1

where 1 is the node ID.

Read Section 5.3 to run the text user-interface program XListen. Make sure that the switch
labeled “SW2” on the MIB510 is on the “OFF” position.

5.2.2 Testing a Sensor Board by Wireless (RF) Link
Testing your sensor board over the RF link requires two Motes. The Mote with the
sensor/data acquisition board attached to it will have the test firmware installed. The other
Mote will be programmed with an application called TOSBase (in /opt/tinyos-
1.x/contrib./xbow/apps/). Assuming you have successfully completed the exercises in
Chapter 4, you should be confident about having the frequencies set correctly.

1. If you have a sensor node (Mote + sensor board) on the MIB, remove it. Install batteries
in it if needed. Make sure the battery switch is in the “ON” position for the MICA2.

2. Attach a either a MICA2 or MICA2DOT to the appropriate connector on the MIB.

 NOTE: Unlike most other TinyOS applications, the MICA2DOT can be used as a base station
Mote. This applies only for the XSensor Series test applications. It is important to use the proper
baud rate which is discussed in Section 5.3.2 below.

3. Change your directory to the TOSBase directory which is in /opt/tinyos-
1.x/contrib./xbow/apps/.

cdapps

cd TOSBase

4. Build and install the TOSBase to the Mote (with node ID 0).
make mica2dot install,0 <programmer>,<port>

Doc. # 7430-0022-07 Rev. A Page 37

 Getting Started Guide

Read Section 5.3.2 to run the text user-interface program XListen. Make sure that the
switch labeled “SW2” on the MIB510 is on the “OFF” position.

5.3 User Interface: XListen

The user interface is a PC-based tool used to view sensor data. XListen is a Cygwin C console
program written in C that receives RS232/radio packets from the Mote and converts to
engineering units. XListen is used only to verify that the sensor board is working properly. It is
not a sensor network program. This program is located in /opt/tinyos-
1.x/contrib/xbow/tools/src/xlisten. By default, you must be that src/ subdirectory to run XListen.
To run XListen from anywhere in the Cygwin shell, do the following in a Cygwin shell:
1. cd /usr/local/bin
2. ln -s /opt/tinyos-

1.x/contrib/xbow/tools/src/xlisten/xlisten.exe xlisten

The source code for XListen is in the tinyos/cygwin/opt/tinyos-1.x/contrib/xbow/tools/src/xlisten/
directory for user modification and editing.

5.3.1 Help List for XListen
XListen has many modes of operation that can be controlled by passing command line
parameters. Help on finding the commands for XListen can be found by typing in
xlisten -? in a Cygwin window (see the text output below).

$ xlisten -?
xlisten Ver:$Id: xlisten.c,v 1.12 2004/08/05 01:35:35 mturon Exp $
Using params: [help]

Usage: xlisten <-?|r|p|x|c|d|q> <-b=baud> <-s=device>
 -? = display help [help]
 -r = raw display of tos packets [raw]
 -p = parse packet into raw sensor readings [parsed]
 -x = export readings in csv spreadsheet format [export]
 -c = convert data to engineering units [cooked]
 -l = log data to a database or file [logged]
 -d = debug serial port by dumping bytes [debug]
 -b = set the baudrate [baud=#|mica2|mica2dot]
 -s = set serial port device [device=com1]
 -h = specify header size [header=offset]
 -q = quiet mode (suppress headers)
 -v = show versions of all modules

5.3.2 Baud rate: -b=[baudrate]
This flag allows the user to set the baud rate of the serial line connection. The default baud
rate is 57,600 bits per second (bps) which is compatible with the MICAz/MICA2. The
desired baud rate must be passed as a number directly after the equals sign with no spaces
in between, i.e., –b=19200.

Optionally, a product name can be passed in lieu of an actual number and the proper baud
will be set, i.e., –b=mica2dot. Valid variables are in

Page 38 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

Table 5-2. Valid variables and baud rates for the –b option

Mote Baud Rate Variable
MICAz/MICA2 57600 mica2

MICA2DOT 19200 mica2dot

5.3.3 Serial port: –s=port [serial]
This flag gives the user the ability to specify which COM port or device XListen should
use. The default port is /dev/ttyS0 or the UNIX equivalent to COM1. The given port must
be passed directly after the equals sign with no spaces, e.g., –s=com3.

5.3.4 Raw data values: –r
Raw mode displays the actual TOS packets as a sequence of bytes as seen coming over the
serial line.

 EXAMPLE—Raw text output with xlisten -r
$ xlisten -r
xlisten Ver:$Id: xlisten.c,v 1.7 2004/03/23 00:52:28 crossbow Exp $
Using params: [raw]
/dev/ttyS0 input stream opened
7e7e000033000000c8035f61d383036100000000e4510d610000000080070000d4b5f577
7e00007d1d8101060029091e09ef082209e7080b09b40800000000000000000000000100
7e00007d1d81020600f007de07da07d507c3064706540500000000000000000000000100

Examining the second line from the output example above, the values are interpreted as:

Packet Byte
Name Example Notes

TOS Header = 7e00007d1d

UART Addess 7e00
Type 00

Group ID 7d Default

Data Payload = 8101060029091e09ef082209e7080b09b408000000000000000000

sensorboard_id 81 MDA300
packet_id 01

node_id 06
reserved 00

Data
29091e09ef082209e7080
b09b40800000000000000
0000

Depends on sensorboard_id and
packet_id. In this case it is the raw
ADC values for an MDA500.

Doc. # 7430-0022-07 Rev. A Page 39

 Getting Started Guide

Table 5-3. The TinyOS files that define this data packet

TinyOS file Information
tos/types/AM TOS_msg header

contrib/xbow/tools/src/xlisten/xsensor.h Xbow sensor packet
contrib/xbow/tools/src/xlisten/boards Sensor/DAQ board specific data payloads

5.3.5 Cooked data values: –c
Cooked mode converts the raw sensor readings within a given packet into engineering units.

 EXAMPLE—Raw text output with xlisten –c –b=mica2dot on a MICA2DOT
programmed with XSensorMDA500.
$ xlisten -c -b=mica2dot
xlisten Ver:$Id: xlisten.c,v 1.7 2004/03/23 00:52:28 crossbow Exp $
Using params: [baud=0x000e] [cooked]
/dev/ttyS0 input stream opened
MDA500 [sensor data converted to engineering units]:

 health: node id=6
 battery: volts=3163 mv
 thermistor: resistance=10177 ohms, tempurature=24.61 C
 adc chan 2: voltage=1258 mv
 adc chan 3: voltage=1001 mv
 adc chan 4: voltage=893 mv
 adc chan 5: voltage=939 mv
 adc chan 6: voltage=875 mv
 adc chan 7: voltage=850 mv

5.3.6 Quiet Mode: –q
This flag suppresses the standard XListen header which displays the version string and
parameter selections.

5.3.7 Exporting Data Readings: –x
Export mode displays raw analog to digital converter (ADC) values as comma delimited
text for use in spreadsheet and data manipulation programs. The user can redirect the
screen output of XListen by using a “> log_filename” to write file. Later that
log_filename can be read by Microsoft® Excel to build charts of the information.

 EXAMPLE—Printing to screen (standard output) with xlisten –x on a
MICA2DOT
$ xlisten -b=mica2dot -q –x
51200,24323,54113,899,97,0,58368,3409
6,193,518,409,328,283,296,298
6,194,517,410,330,292,310,300
6,194,518,409,329,286,309,288
6,194,517,411,331,287,297,300
6,194,516,413,335,288,301,287

Page 40 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

5.3.8 Debugging: –d
This flag puts XListen in a mode so that it behaves exactly like the TinyOS raw listen tool
(opt/tinyos-1.x/contrib/xbow/tools/src/raw_listen.c). All other command line options
except –b (baud rate) and –s (UART serial port) will be ignored. This mode is mainly
used for compatibility and debugging serial port issues. Individual bytes will be displayed
as soon as they are read from the serial port with no post-processing. In most cases -r
(raw ADC readings) is equivalent and preferred to using debug mode.

5.3.9 Display Options
The -r, -p, and -c flags are considered display options. These can be passed in various
combinations to display multiple views of the same packet at once. The default display
mode when XListen is invoked with no arguments is -r.

 EXAMPLE—Output with xlisten –r –p -c
$ xlisten -b=mica2dot -r -p -c
xlisten Ver:$Id: xlisten.c,v 1.7 2004/03/23 00:52:28 crossbow Exp $
Using params: [baud=0x000e] [raw] [parsed] [cooked]
/dev/ttyS0 input stream opened
7e7e000033000000c8035f61d383036100000000e4510d610000000080070000d4b5f577
7e00007d1d01010600c200050293014401210135012f0122010000000000000000000100
mda500 id=06 bat=00c2 thrm=0205 a2=0193 a3=0144 a4=0121 a5=0135 a6=012f
a7=0122
MDA500 [sensor data converted to engineering units]:
 health: node id=6
 battery: volts=3163 mv
 thermistor: resistance=10217 ohms, tempurature=24.53 C
 adc chan 2: voltage=1246 mv
 adc chan 3: voltage=1001 mv
 adc chan 4: voltage=893 mv
 adc chan 5: voltage=955 mv
 adc chan 6: voltage=936 mv
 adc chan 7: voltage=896 mv

5.4 Example Output from XSensorMTS400

$ xlisten -r -p -c -b=mica2 -s=com1
xlisten Ver:$Id: xlisten.c,v 1.9 2004/04/08 01:35:35 crossbow Exp $
Using params: [baud=0x1001] [raw] [parsed] [cooked]
com1 input stream opened

7e0000201d860101007d019803bf1aaccc1eabe3aacad090686545a30000000002e50100
mts420 id=01 battery=017d humidity=0398 temp=1abf
intersema calibration words(1..4) = ccac,ab1e,aae3,d0ca
intersematemp=6890 intersemapressure=4565
taosch0=00a3 taosch1=0000 accel_x=0200 accel_y=01e5
MTS420 [sensor data converted to engineering units]:
 health: node id = 1
 battery: = 3287 mv
 humidity: = 31 %
 Temperature: = 28 degC
 IntersemaTemperature: = 28 degC
 IntersemaPressure: = 1007 mbar

Doc. # 7430-0022-07 Rev. A Page 41

 Getting Started Guide

 Light: = 28.059999 lux
 X-axis Accel: = 583.333313 mg
 Y-axis Accel: = 81.218269 mg

 NOTE: When connected to the computer via serial COM to UART, GPS data was not available, so
non-GPS sensor data readings are shown above. In order to receive/display the GPS data you must
uncomment #define MTS420 line in sensorboardApp.h file found under tinyos-
1.x/contrib./xbow/apps/XSensorMTS400

5.5 Example Output from XSensorMTS510

Crossbow@wireless_dev /opt/cvs-src_tinyos-1.x/contrib/xbow
$ xlisten -r -p -c -b=mica2dot -s=com1
xlisten Ver:$Id: xlisten.c,v 1.9 2004/04/08 01:35:35 crossbow Exp $
Using params: [baud=0x000e] [raw] [parsed] [cooked]
com1 input stream opened
7e0000201d020105008303f4010302550154015401540155010000000000000000000100
mts510 id=05 light=0383 acc_x=01f4 acc_y=0203
 sound[0]=155 sound[1]=154 sound[2]=154 sound[3]=154 sound[4]=155
MTS510 [sensor data converted to engineering units]:
 health: node id=5
 light: =899 ADC counts
 X-axis Accel: =-0.016129 g
 Y-axis Accel: =0.114754 g

5.6 Example Output from XSensorMDA300

$ xlisten -r -p -c -b=mica2dot -s=com1
xlisten Ver:$Id: xlisten.c,v 1.9 2004/04/08 01:35:35 crossbow Exp $
Using params: [baud=0x000e] [raw] [parsed] [cooked]
com1 input stream opened
7e0000811d01010400c100e1014001fa00d500fa00ee00b8000000000000000000000100
Mda300 id=04 bat=00c1 thrm=01e1 a2=0140 a3=00fa a4=00d5 a5=00fa a6=00ee
a7=00b8
MDA300 [sensor data converted to engineering units]:
 health: node id=4
 battery: volts=3183 mv
 thermistor: resistance=8874 ohms, tempurature=27.53 C
 adc chan 2: voltage=995 mv
 adc chan 3: voltage=777 mv
 adc chan 4: voltage=662 mv
 adc chan 5: voltage=777 mv
 adc chan 6: voltage=740 mv
 adc chan 7: voltage=572 mv

5.7 Example Output from XSensorMDA500

$ xlisten -r -p -c -b=mica2dot -s=com1
xlisten Ver:$Id: xlisten.c,v 1.9 2004/04/08 01:35:35 crossbow Exp $
Using params: [baud=0x000e] [raw] [parsed] [cooked]
com1 input stream opened
7e0000811d01010400c100e1014001fa00d500fa00ee00b8000000000000000000000100
mda500 id=04 bat=00c1 thrm=01e1 a2=0140 a3=00fa a4=00d5 a5=00fa a6=00ee
a7=00b8
MDA500 [sensor data converted to engineering units]:

Page 42 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

 health: node id=4
 battery: volts=3183 mv
 thermistor: resistance=8874 ohms, tempurature=27.53 C
 adc chan 2: voltage=995 mv
 adc chan 3: voltage=777 mv
 adc chan 4: voltage=662 mv
 adc chan 5: voltage=777 mv
 adc chan 6: voltage=740 mv
 adc chan 7: voltage=572 mv

Doc. # 7430-0022-07 Rev. A Page 43

 Getting Started Guide

6 Surge Multi-hop Networking Application

The TinyOS-1.1.0 release and later include library components that provide ad-hoc multi-hop
routing for sensor network applications. The implementation uses a shortest-path-first algorithm
with a single destination node (the root) and active two-way link estimation. The data movement
and route decision engines are split into separate components with a single interface between
them to permit other route-decision schemes to be easily integrated in the future. Use of the
multi-hop router is essentially transparent to applications (provided they correctly use the
interface).

6.1 How does Surge Multi-hop network work?

Crossbow’s mesh networking resides as a software component in TinyOS. Typical applications
that run on the Motes use several different software components―e.g., sensor components, data
logging, and more. If the application is going to use mesh networking, it will link in the
MultiHopRouter software component. The implementation of the MultiHopRouter component
found in Crossbow’s TinyOS contribution directory includes some significant performance
upgrades, and it is a state-of-the-art mesh networking algorithm.

Figure 6-1. A Graphviz representation of the TinyOS application Surge_Reliable and
Surge_Reliable_Dot

The MultiHop router component automatically transmits link quality estimates, publishes
distance estimates, performs optimal route selection and forwards multi-hop data traffic.
Pictured in Figure 6-1, the routing component is divided into two major pieces: the
MultiHopEngineM and the MultiHopLEPSM component. Additionally, it uses the QueueSend
component, the TimerC component and the GenericCommPromiscuous component to properly
perform its duties. The MultiHopEngineM component implements the core forwarding and
sending function of multi-hop routing. Once a parent has been determined, the
MultiHopEngineM properly receives updates and transmits the data packet on towards its final
destination. Upon receipt of a Multi-hop packet, the MultiHopEngineM forwards the packet if
and only if it was directly addressed to the node via the packet addressing mechanism. If so, the
engine uses the MultiHopLEPSM to select the next hop destination and updates the packet by
using the RouteSelect interface. Once the MultiHopLEPSM has updated the fields of the multi-
hop packet, the packet is handed to the QueueSend for transmission as soon as possible. The

Page 44 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

QueueSend is a simple component that will accept multiple transmission requests and perform
the actual transmissions as the channel allows.

The data movement and route decision engines are split into separate components with a single
interface between them to permit other route-decision schemes to be easily integrated in the
future. Use the MultiHopRouter is essentially transparent to applications (provided they correctly
use the interface).

Use of the multi-hop library component is mostly transparent to the application. Any application
that uses the Send interface can be connected to this component to achieve multi-hop
functionality. One limitation of multi-hop, however, is the aggregate data rate. Applications
should maintain average message frequency at or slower than one message every two seconds.
Higher rates can lead to congestion and/or overflow of the communication queue.

6.2 Programming Motes with Surge_Reliable

To program additional MICAz (Section 6.2.1) or MICA2 (Section 6.2.2) Motes with
Surge_Reliable and additional MICA2DOTs (Section 6.2.3) with Surge_Reliable_Dot. You’ll
need to install TinyOS 1.1.0 and then the TinyOS 1.1.10 RPM update onto your PC. Follow the
instructions per Section 2.2.4 if you have not installed Crossbow’s TinyOS subdirectories.

 NOTE: Remember, the Mote used as the network base station must be a MICA2 or MICAz
programmed with a node address, <nodeid>, of 0 (zero).

6.2.1 Installing Surge_Reliable on MICAz Mote
The key to building Surge_Reliable in TinyOS 1.1.10 for the MICAz is to make certain
that Surge_Reliable’s makefile uses the new Makerules in {TOSROOT}/tools/make/.

COMPONENT=Surge
SENSORBOARD=micasb
#TINYSEC=true

For MICA2 and MICA2DOT
PFLAGS+= -I../../tos/platform/mica2 -I../../tos/CC1000RadioAck -
I../../tos/lib/ReliableRoute -I%T/lib/Queue -I%T/lib/Broadcast -
I%T/lib/Attributes

For MICAZ
PFLAGS+= -I../../beta/tos/lib/CC2420RadioAck -
I../../beta/tos/platform/micazack -I../../tos/lib/ReliableRoute -
I%T/lib/Queue -I%T/lib/Broadcast -I%T/lib/Attributes

include ../MakeXbowlocal
include ${TOSROOT}/tools/make/Makerules

TINYSEC only works for MICA2/MICA2DOT Motes

For MICA2 users, uncomment this line.

For MICAz users, uncomment this line.

Figure 6-2. The makefile for Surge_Reliable. Text boxes highlight where to comment/uncomment for
proper compiling of the application for MICA2 and MICAz Motes

1. Edit Surge_Reliable’s makefile by uncommenting the corresponding line for MICA2 as
shown in Figure 6-2.

Doc. # 7430-0022-07 Rev. A Page 45

 Getting Started Guide

2. Open a Cygwin window.

3. Change directory to the tinyos-1.x/contrib/xbow/apps/Surge_Reliable.

cd /opt/tinyos-1.x/contrib/xbow/apps/Surge_Reliable

4. Build the application.

make micaz

5. Download (flash) the MICAz with the application. Be sure to attach the MICAz Mote on
the MIB510 before typing in this command.

make micaz reinstall,<nodeid> <programmer>,<port>

where <nodeid> is the node address you want that Mote to be and <#> is the serial
port number to which the MIB510 is connected. Repeat this step for as many Motes
you need to have programmed.

 NOTE: The TINYSEC variable in the above Makefile sets the network security for MICA2
motes. The MICA2DOTs currently do not support this feature. Hence it is important that you
comment out this line when using MICA2DOTs in the MICA2 network. Otherwise, MICA2DOTs
won’t be able to join the network!

6.2.2 Installing Surge_Reliable on MICA2 Motes
1. Edit Makefile to uncomment the corresponding line for MICAz as shown above.

2. Open a Cygwin window. Change directory to the tinyos-
1.x/contrib/xbow/apps/Surge_Reliable.

cd /opt/tinyos-1.x/contrib/xbow/apps/Surge_Reliable

3. Build the application.
make mica2

4. Download (flash) the application into a MICA2: attach a MICA2 Mote into the 51-pin
connector on the MIB.

make mica2 reinstall,<nodeid> <programmer>,<port>

5. Repeat until you have installed all the MICA2 Motes.

6.2.3 Installing Surge_Reliable_Dot on MICA2DOT Motes
1. Open a Cygwin window. Change directory to tinyos-

1.x/contrib/xbow/apps/Surge_Reliable.
cd /opt/tinyos-1.x/contrib/xbow/apps/Surge_Reliable_Dot

2. Build the application.
make mica2dot

3. Install the application into a MICA2DOT: attach a MICA2DOT Mote into the 19 pin
connector on the MIB510.

Page 46 Doc. # 7430-0022-07 Rev. A

Getting Started Guide

make mica2dot reinstall,<nodeid> <programmer>,<port>

The <nodeid> should be never be 0 for a MICA2DOT and needs to be different than the
numbers you gave for the MICA2s.

6.2.4 Changing the Transmit Rate in Surge_Reliable or Surge_Reliable_Dot
You can change the tranmsit rate of the Motes running Surge_Reliable or
Surge_Reliable_Dot Below is the portion of Surge.h located in both the Surge_Reliable
and the Surge_Reliable_Dot directories. Specifically, change line 33 which has the
variable “INITIAL_TIMER_RATE.” The number represents time in milliseconds. In that
line, the transmit rate is determined by multiplying 1024 by some integeter value greater
than or equal to two.

 EXAMPLE—Part of the Surge.h file in Surge_Reliable_Dot/

 * This file is distributed under the terms in the attached INTEL-LICENSE
 * file. If you do not find these files, copies can be found by writing to
 * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
 * 94704. Attention: Intel License Inquiry.
 */

Change the “2” in line 33
to another number. (Try
“8”.)

enum{
 INITIAL_TIMER_RATE = 1024 * 2,
 FOCUS_TIMER_RATE = 1000,
 FOCUS_NOTME_TIMER_RATE = 1000
};

6.3 Running Surge-View GUI

Follow the instructions provided in Chapter 1 of the guide to run the GUI to visualize the
network topology.

Doc. # 7430-0022-07 Rev. A Page 47

 Getting Started Guide

7 Appendix A. Warranty and Support Information

7.1 Customer Service
As a Crossbow Technology customer you have access to product support services, which
include:

• Single-point return service

• Web-based support service

• Same day troubleshooting assistance

• Worldwide Crossbow representation

• Onsite and factory training available

• Preventative maintenance and repair programs

• Installation assistance available

7.2 Contact Directory
United States: Phone: 1-408-965-3300 (8 AM to 5 PM PST)

 Fax: 1-408-324-4840 (24 hours)

 Email: techsupport@xbow.com

Non-U.S.: refer to website www.xbow.com

7.3 Return Procedure

7.3.1 Authorization
Before returning any equipment, please contact Crossbow to obtain a Returned Material
Authorization number (RMA).

Be ready to provide the following information when requesting a RMA:

• Name

• Address

• Telephone, Fax, Email

• Equipment Model Number

• Equipment Serial Number

• Installation Date

• Failure Date

• Fault Description

Page 48 Doc. # 7430-0022-07 Rev. A

http://www.xbow.com/

Getting Started Guide

7.3.2 Identification and Protection
If the equipment is to be shipped to Crossbow for service or repair, please attach a tag TO THE
EQUIPMENT, as well as the shipping container(s), identifying the owner. Also indicate the
service or repair required, the problems encountered and other information considered valuable
to the service facility such as the list of information provided to request the RMA number.

Place the equipment in the original shipping container(s), making sure there is adequate packing
around all sides of the equipment. If the original shipping containers were discarded, use heavy
boxes with adequate padding and protection.

7.3.3 Sealing the Container
Seal the shipping container(s) with heavy tape or metal bands strong enough to handle the weight
of the equipment and the container.

7.3.4 Marking
Please write the words, “FRAGILE, DELICATE INSTRUMENT” in several places on the
outside of the shipping container(s). In all correspondence, please refer to the equipment by the
model number, the serial number, and the RMA number.

7.3.5 Return Shipping Address
Use the following address for all returned products:

Crossbow Technology, Inc.
4145 N. First Street
San Jose, CA 95134
Attn: RMA Number (XXXXXX)

7.4 Warranty
The Crossbow product warranty is one year from date of shipment.

Doc. # 7430-0022-07 Rev. A Page 49

Crossbow Technology, Inc.
4145 N. First Street
San Jose, CA 95134
Phone: 408.965.3300
Fax: 408.324.4840
Email: info@xbow.com

	Mesh Networking Right Out-of-the-Box
	Installing the Surge-View Folder onto Your PC
	Preparing the Motes and Base Station
	SerialForwarder
	Double-clicking on the file SerialForwarder.exe in the Surge
	Command Prompt directions

	Running the Surge GUI
	Changing the Background of the Surge GUI

	Analyzing Network Data with Stats
	Reviewing Network Topology and Yield with HistoryViewer

	Installation of TinyOS
	What You Need for Installation
	Installing TinyOS 1.1.0, Development Tools, and TinyOS 1.1.1
	Installing TinyOS 1.1.0
	Updating to TinyOS 1.1.10
	TinyOS 1.1.10’s make Utility Fix
	Copy the Crossbow TinyOS Directory (xbow/) into the contrib/
	XInstall Utility

	Verification of TinyOS and TinyOS Tools Installation
	TinyOS Installation Structure
	TinyOS online Resources / Major and MinorReleases

	Programming Environment Customization
	Setting Aliases
	Compiling TinyOS Applications
	Programming Boards
	MIB500/Parallel Port Programmers
	MIB510/Serial Port Programmers
	MIB520 USB Programmers
	MIB600 Ethernet Programmers

	Installing TinyOS Applications into a Mote
	Setting the Group ID and Node Address for the Mote Network
	The MakeXbowlocal File
	Radio Frequencies

	Introduction to TinyOS and NesC
	TinyOS Programming philosophy
	Concurrency Model
	An Example Application: Blink
	Compiling the Blink Application
	Programming a Mote with the Application Blink
	Generating the Component Structure Documentation
	Radio Communications
	Sending Messages with CntToLedsAndRfm
	Receiving Messages with RfmToLeds
	Radio Transmit/Receive FAQ

	Learning More About TinyOS and nesC

	Test Applications and Drivers for Sensor and Data Acquisitio
	Drivers
	Test Applications: The XSensor Series
	Testing a Sensor Board over the UART
	Testing a Sensor Board by Wireless (RF) Link

	User Interface: XListen
	Help List for XListen
	Baud rate: -b=[baudrate]
	Serial port: –s=port [serial]
	Raw data values: –r
	Cooked data values: –c
	Quiet Mode: –q
	Exporting Data Readings: –x
	Debugging: –d
	Display Options

	Example Output from XSensorMTS400
	Example Output from XSensorMTS510
	Example Output from XSensorMDA300
	Example Output from XSensorMDA500

	Surge Multi-hop Networking Application
	How does Surge Multi-hop network work?
	Programming Motes with Surge_Reliable
	Installing Surge_Reliable on MICAz Mote
	Installing Surge_Reliable on MICA2 Motes
	Installing Surge_Reliable_Dot on MICA2DOT Motes
	Changing the Transmit Rate in Surge_Reliable or Surge_Reliab

	Running Surge-View GUI

	Appendix A. Warranty and Support Information
	Customer Service
	Contact Directory
	Return Procedure
	Authorization
	Identification and Protection
	Sealing the Container
	Marking
	Return Shipping Address

	Warranty

