i message_t* packetPtr = &packet;

3.34 Generic components

By default, components in TinyOS are singletons: only one exists. Every configuration
that names a singleton component names the same component. For example, if two
configurations wire to LedsC, they are wiring to the same code that accesses the same
variables. A singleton component introduces a component name that any configuration
can use into the global namespace.
In addition to singleton components, nesC has generic components. Unlike singletons,
a generic component can have multiple instances. For example, while a low-level
‘ software abstraction of a hardware resource is inherently a singleton — there is only one
‘ copy of a hardware register — software data structures are instantiable. Being instantiable
‘ makes them reusable across many different parts of an application. For example, the
\ module BitVectorC provides the abstraction of a bit vector; rather than define macros
‘ or functions to manipulate a bit vector a module can just use the interface BitVector
“ and assume that a corresponding configuration connects it to a BitVectorC of the proper
width.
\ Earlier versions of nesC (1.0 and 1.1) did not support generic components. Whenever
‘ a component requires a common data structure, a programmer had to make a copy of
the data structure component and give it a new name, or separate functionality and
allocation by locally allocating data structures and using library routines. For example,
network protocols typically all implemented their own queue data structures, rather than
relying on a standard implementation. This code copying prevented code reuse, forcing
programmers to continually revisit common bugs and problems, rather than building on
well-tested libraries.
Generic components have the keyword generic before their signature:

generic module SineSensorC () { generic configuration TimerMillicC () {
provides interface Init; provides interface Timer<TMillis>;
provides interface Read<uintlé6_t >; }

Listing 3.21 Generic module SineSensorC and generic configuration TimerMilliC

To use a generic component, a configuration must instantiate it with the new keyword.
This is the beginning of the code for the configuration BlinkAppC, the top-level
configuration for the Blink application, which displays a 3-bit counter on a mote’s LEDs
using three timers:

